全球十大数据分析榜样企业_数据分析师
Burberry集团与个性化购物。Burberry正在于其商店内应用射频识别(RFID)标签以打造更丰富的购物体验。当客户手持某件商品走过显示屏幕,RFID标签将触发一个视频来展示该产品是如何制作的,并提供搭配它的其他产品。经过客户许可后,RFID标签还可以通过跟踪顾客试穿记录来创建客户档案。
可口可乐公司与产品一致性。“很多人认为世界上保存最好的秘密可能就是可乐的配方了,但它并不是,”Laney说。“其实是橙汁的配方。”可口可乐工程师鉴定了超过600(!)种可能的橘子口味,然后建立了一个专有的算法,以确保每一批橙汁都拥有一致的味道和质地。橙汁数据档案将其美汁源和Simply Orange品牌与其他产量口味每个橙子都有变化的不知名品牌区分开来。Laney鼓励商家鉴别那些需要保持外部因素一致性的地方,如供应链。
欧莱雅集团与客户参与。欧莱雅直接将产品销售给零售商,这就造成了美容产品制造商和其客户之间的间隔。这其实并没有真正伤害这一世界上最大的化妆品和美容公司,但化妆品巨头仍然希望其新的客户指挥中心将改变这种状况。使用Clarabridge的CRM技术,欧莱雅正在分析推特,Facebook上发布的信息,产品评论和新闻报道。必要时,发布内容会由内部直接转到某个指挥中心的恰当员工处,而他会直接与发布者交互。欧莱雅还没有公布数据,但它声称指挥中心“改变了如何利用品牌意识和忠诚度,”Laney说。
西太平洋银行公司与客户的360度视角。在过去的几年中,澳大利亚银行一直采用来自SAS研究所的技术建立一个名为“KnowMe”的客户360度视角程序。该程序一部分基于捕捉和集中其1200万客户的用户活动,如ATM使用情况和呼叫中心交互情况。基于行为分析,西太平洋银行将客户与新方案或产品相匹配。在九个月里,该方案就使西太平洋银行的客户参与从1%扩大到了25%,据Laney说。
Tom Farms LLC与数字业务。Tom Farms已在养殖过程中几乎每一个可能的部分都实行了数字化 – 从挂满了能够产生实时数据流传感器的自动驾驶联合收割机,到帮助监测和控制灌溉系统的移动应用程序。对于Tom Farms,拥抱数据和分析,已经帮助它从20世纪70年代的700英亩成长为今天的20000亩,据纽约时报报道。成功并不仅仅体现在面积的增加,据Laney说。汤姆农场使用技术以“减少改变作物以规避天气和疾病的需要,”他说。
Food Genius与开放数据。Food Genius是一个餐饮数据供应商。它从餐厅在网上发布的菜单上刮取数据并搜索本地发展趋势,以帮助像卡夫食品公司,甚至是阿贝兹这种全国连锁店在本地层面更智能的开发和销售产品。 “这是一个从头开始完全基于刮取互联网开放内容的一个有趣例子,”Laney说。他鼓励企业去思考开放数据能如何改进已有产品或提供新的产品给客户。
洛克希德•马丁公司与暗数据。该航空航天公司正在使用暗数据 – 企业数据,可能对一个公司有用,但相反的,对更加积极主动的项目管理来说就是封尘存储。它关联并分析数百个程序指标“以确定程序表现的领先指标”,Laney说。而且它还分析了项目人员的沟通,以确定“预测程序降级”的语言,他补充说,暗数据将程序的预见性提高了3%。
墨西哥石油公司(Pemex)与传感器数据。设备故障的一个指标就是噪音,所以石油公司开始为其炼油厂配备测量声音振动的传感器。当测量值变得异常,工程师就会收到提醒并“可以立刻去有问题的设备那里并对它进行更换或修理而无需太多停机时间,”Laney说。“他们已经能够从计划外维修保养模型变为计划内维修保养。”
加州大学圣地亚哥分校与众包。为了找到臭名昭著的蒙古统治者成吉思汗的陵墓,加州大学圣地亚哥分校向大众开放了卫星图像。该项目引来了10,000名志愿者,确定了55个有考古意义的地点。(不过到目前为止,大汗墓的位置仍是一个谜。)就像寻找成吉思汗的陵墓一样,Laney表示,企业不应该忽视像众包和游戏化这样可以用来发现新东西的技术。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28