大数据告诉你企业如何做信息整合_数据分析师
如今,数据的作用已经越来越重要了,数据的重要程度已经高于物质资产和人力资本了。而如今,企业在每时每刻都在生产 海量的数据。其中非结构化的数据信息达到85%左右,传统的信息资源管理技术只能应对结构化数据,那么我们的非结构化 数据就将面临着前所未有的挑战。通过大数据技术,我们可以将原本毫无头绪信息数据编织在一起,经过分析筛查,从而能 够精准地找到海量数据的潜在价值。为企业处理日益增长的海量非结构化数据提供了高效、低成本的解决方案,弥补了传统 关系型数据库处理非结构化数据方面的不足,深化和拓展了企业商业智能和服务的能力,提高了企业的决策水平。
大数据时代到来,企业发展机遇与挑战并存
(一)大数据掀起企业发展革新浪潮
大数据时代,数据逐渐变现为独特的流通货币。企业大数据的真正核心应用价值不在于数据本身,而是利用数据在企业内部驱动管理模式的转变、营销模式的创新和IT系统架构的变革等,通过大数据的运用,促使企业经营业务的顺利开展,为引导企业战略决策提供重要的依据。如:快速消费品行业通过大数据分析产品潜在购买关联;汽车研发企业通过分析车辆运行情况等大数据来优化用户体验;金融行业利用大数据评估个人信用风险等等。企业对于海量数据的深度挖掘和运用,将掀起新一波生产率增长和消费者盈余浪潮。
大数据驱动企业管理模式转变。大数据时代推动企业管理模式转变主要体现在“数据资产化”和“决策智能化”两个方面。第一,大数据时代,数据信息逐渐成为企业重要战略性资源,拥有的数据信息越多,能够挖掘分析获取的潜在价值就越丰富,信息化建设投资回报率就越大。因此,企业信息部门将逐渐由“成本中心”转变为“利润中心”。第二,有关数据显示,企业数据智能化程度提升10%可提高15%的产品和服务质量。大数据时代,企业可对大量的客户、业务、营销、竞争等多方面数据信息进行分析挖掘,提取有用价值信息,进行智能化决策分析,制定更加可靠的战略。因此,企业管理将通过决策智能化实现从“业务驱动”到“数据驱动”的转变。
大数据驱动企业营销模式创新。大数据时代,企业营销模式的创新主要体现在对消费者的需求预测和对产品的功能性验证两方面。企业在运用云平台模式的基础上,构建了畅通的用户行为和反馈的获取渠道,再引入Hadoop等轻量级、开源的大数据分析工具,通过大数据分析,深刻理解消费者的需求,拉近了与消费者的距离。在此基础上,创新企业营销模式,一方面,通过高效分析大量的消费使用信息做出消费需求的预判;一方面,通过用户行为监控,针对用户行为和需求反馈快速做出产品功能调整,实现产品功能商业价值存在与否的验证。
大数据驱动企业IT系统架构变革。IT系统是大数据的根基。现代企业IT系统架构模型多以Scale-UP为主,主要建立在IOE(IBM小型机、Oracle数据库、EMC存储)+Cisco模型基础上,能够适应既定模型下一定数据量的业务流程的要求。而大数据时代对企业IT系统的要求将会超越现有厂商架构的技术顶点,IT支出与数据信息的增长将呈现线性正相关。据赛迪顾问统计,各行业大数据IT投资规模在急速攀升,2012年投资规模超过4.5亿,2013年已达到10亿规模,有望在2016年突破百亿规模。企业面临成本、技术和商业模式的严峻挑战。目前,国产化热潮来袭,呈现出利用Scale-out架构+开源软件逐步替代现有系统架构的“去‘IOE’”的信息化建设趋势。
(二)大数据时代企业信息资源管理的难点
大数据时代,物联网、云计算、移动互联网等新一代信息技术在企业产品研发、客户关系管理、风险管理、供应链管理、决策支持等环节的应用逐步深入,具有“大量(Volume)、多样(Variety)、快速(Velocity)、价值(Value)”特性的信息被大量创造出来。这些信息资源在统一标准规范、实时精准管控和深层价值挖掘上难度较大,企业面临信息资源管理的巨大挑战。
结构复杂多样,统一标准规范难。大数据时代,信息资源在组织上表现为非线性化,超文本、超媒体信息逐渐成为主要的方式;同一服务器上的信息资源也可能在数据结构、字符集、处理方式等方面存在差异。大数据这一结构复杂多样的特性给信息资源统一标准和规范的建立带来麻烦,使得体量庞大的结构化和非结构化的信息资源处于无序组织状态。标准化、规范化企业信息资源是未来企业信息化建设的重点和难点之一。
动态性与交互性并存,实时精准管控难。大数据时代,互联网信息是企业信息资源的重要组成部分,丰富的网络信息资源为企业数据获取提供了便利,这些资源为企业进行大规模、精准化的消费者行为研究提供了机会,而互联网信息的动态性是显而易见的,具有很大的自由度和随意性。同时,交互性是网络信息传播的最大特点,互联网形成了企业与用户沟通的桥梁,企业和用户共同参与,使得信息双向流动。企业对自由灵活的且互动性强的信息资源实时精准控制难度越来越大。
数量庞大且内容多样,深层价值挖掘难。大数据时代企业信息资源包罗万象,一方面是与外部的客户、合作伙伴通过文本信息、社交网路、移动应用等形式进行互动时产生大量的数据;一方面,企业内部生产研发、综合办公、视频监控等日常经营管理活动产生的大量信息。这些信息资源在形式上表现为文本、图像、音频、视频等,是多媒体、多语种、多类型信息的混合体。研究表明,中国捕获和产生的数字信息量有望在2012年至2020年间增至8.5ZB,实现22倍的增长,或保持50%的年复合增长率。企业在PB级甚至EB级的数据中寻找相关信息无异于大海捞针,利用信息驱动决策的成本和复杂性与日俱增。
企业信息资源管理体系与信息技术发展不对称
(一)传统粗放式信息资源管理的整合度不高
企业信息资源长期处于粗放式管理状态。企业对内部产生和外部反馈的大量数据信息仅仅是存储下来,缺少信息的甄别、分类、整合和加工,很少利用信息进行管理决策,信息资源的利用率非常低。大多数企业缺乏有效的方法、手段和机制对信息资源进行管理,无法及时有效的对信息资源进行提取、集成和分析,整合度非常低。
(二)信息资源管理缺乏对大数据的深度认知
就企业而言,信息资源管理的核心目标就是确保信息资源的有效利用,做到正确决策。企业只有深度认知大数据特征以及大数据给企业信息资源管理带来的难点,才能有序组织和管理结构复杂、大量、实时且潜在价值高的数据信息,才能及时、准确地挖掘分析出海量数据信息的潜在价值,才能确保信息资源的有效利用。然而,多数企业在信息资源管理过程中,对大数据的认知还只留于表面,导致信息资源的有效利用率偏低。
(三)信息资源管理缺乏数据治理体系化建设
数据治理尚属比较新兴的、发展中的概念,随着“大(大数据)云(云计算)平(平台)移(移动互联网)”等新一代信息技术的飞速发展,对企业数据质量的要求越来越高,企业亟需数据治理(Data Governance)来输出规则的可信度高的数据。然而,目前国内大多数企业在数据治理方面还处于初级阶段,只是做了简单的数据质量检查、数据归档、数据安全等分散性的数据处理工作,没有形成数据治理方法论,数据作为企业核心资产来运作的理念尚未形成,完整的数据治理体系建设缺失。
大数据时代企业如何进行信息资源整合
(一)统一信息资源模式,强化数据标准建设
大数据时代,企业信息资源整合的关键是依托企业主数据管理(MDM,Master Data Management),强化数据标准化建设,实现信息资源模式的统一。企业主数据管理就是将企业的多个业务系统中整合最核心的、最需要共享的数据(主数据),集中进行数据的清洗和丰富,并且以服务的方式把统一的、完整的、准确的、具有共识性的主数据分发给企业内需要使用这些数据的应用。赛迪经略总结多年企业信息化规划经验,结合大数据时代企业信息资源管理的要求,提出了识别、诊断、规划、实施、维护5个阶段实现企业主数据管理的方法论。
(二)推进结构化和非结构化数据的融合发展
大数据时代,实现企业海量复杂数据信息的科学有效管理是保障大数据技术能够充分挖掘企业信息资源的潜在价值的前提。纸质信息与数字化的视频、音频、邮件、图片等非结构化数据在企业信息资源中的比重的逐步攀升,蕴含了丰富的潜在价值。这些非结构化数据的构造方法重复率高、冗余存储明显,且不同对象之间可能存在复杂的关系。然而,传统的面向对象的数据模型无法实现对非结构化数据的组织和管理。因此,企业需推进结构化和非结构化数据的融合式发展,将超文本、超媒体数据模型和面向对象数据模型进行融合,构建适合结构化和非结构数据统一组织和管理的数据模型。
(三)积极部署大数据应用,驱动信息资源的有效利用
大数据时代,企业信息资源整合的最终目标是利用大数据分析与挖掘技术实现信息资源的高效利用。应用系统是大数据的根基,企业应加大大数据技术的应用部署力度,综合运用云计算、分布式计算、数据交换、数据仓库、数据挖掘以及非结构化的数据处理等多层次的大数据技术搭建大数据平台。
(四)重视数据安全管理,确保大数据生态圈信息安全
大数据时代,信息系统之间互联是必然的,他们会形成一个息息相关的生态圈。在这一生态圈里,存储和管理的大量数据信息是企业市场竞争力的核心,需要对数据安全问题进行控制和管理。因此,企业在信息资源整合过程中应以数据安全管理为前提,需要与上下游企业以及安全管理机构、评测机构等第三方机构开展广泛合作,从企业管理制度、流程和技术手段等多方面协作确保大数据生态圈的数据信息安全。
大数据的应用会将提升企业对大数据的关注,鼓励企业大数据产业中投入更多的资源,利用大数据这个工具,为人类社会造 福。在互联网大数据时代下,谁掌握了信息源,谁就掌握了市场脉搏。运营商可基于海量大数据,深度挖掘数据背后的信息 ,聚合服务市场价值链中的信息,进行统筹分析整理,并制定企业深度定制信息化产品应用解决方案,全方位、多角度助力 企业发展。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16