监控大数据 论智能交通核心诉求及趋势
安全和便捷是核心
智能交通市场有着庞大的产业体系,涉及到的行业及企业也各有不同,但智能交通的建设和发展无非要解决的两个问题:一个是运行的安全,包括车辆的行使和停放安全、驾驶员和第三者的生命财产安全,以及空气环境的保护等;另一个是出行的便捷,包括发展和完善城市公共交通路网建设、利用大数据疏导交通拥堵等。
这两个问题之所以突出,是因为智能交通建设的节奏跟不上我国城市化发展和机动车数量快速增长的速度,导致交通拥堵和交通事故频发成为影响国民出行的核心问题。 所以发展智能交通保障交通安全、缓解道路拥堵、减少交通安全事故成为必然,也为行业市场带来巨大的商机。
安防企业是以视频监控为主的产业,在智能交通的建设中,为各地的交通部门提供各类定制化的解决方案。在各级交通运营管理中,这些监控设备为执法部门提供违章停车、打手机、闯红灯、压线、超速和无安全带、套牌等视频及图片证据,对交通环境的维护、交通信息的传播、突发事件的响应都起着重要的作用。
此外,通过结合地理信息系统和导航卫星定位等系统,在防范和打击犯罪活动、追捕犯罪嫌疑人方面提供可视化的空间和时间上的帮助,并且利用大数据、云计算等IT技术框架,在前端智能人脸抓拍、识别、检索和对比中为公安机关的刑侦工作带来方便。
目前,海康威视(002415,股吧)、大华股份(002236,股吧)、宇视、科达、高新兴(300098,股吧)等安企在行业应用上表现出色,凭借视频监控领域丰富的实践经验和技术积累,它们在停车场管理系统、高清卡口应用系统、高清电子警察应用系统、车入口控制与停车诱导系统、智慧监控平台、大数据及云存储系统等为公安交通部门提供完整的基于视频监控的智能交通解决方案。而随着公安联网及数据互联互通工作的持续推进,未来安防视频监控系统将作为子系统嵌入到整个地区智能交通的大系统中,对行业标准、入口接入、数据共享等方面提出新的挑战。
除此之外,在车辆主动驾驶系统及辅助系统的研发中,某些安企也投入精力进行市场的培养和开发,但目前市场的接受度并不高,系统所能提供的服务与其本身的市场价值还不匹配,无法满足消费者的刚性需求。
智能化和大数据技术是趋势
智能交通建设和运营的过程中,将产生越来越多的视频监控、卡口电警、路况信息、管控信息、营运信息、GPS定位信息、RFID识别信息等数据,每天产生的数据量可以达到PB级别,并且是指数级的增长。虽然绝大部分数据是“沉睡的数据”,但按照相关规定,需要对数据进行有期限或无期限的保存,这无疑给用户在存储成本上带来压力,而通过监控摄像机前端智能技术和大数据分析技术的应用,很好地解决了行业用户的此类问题,给用户带来经济效益,同时也可以将工作人员从纷繁复杂的监控画面中解放出来。
目前,这两项技术正成为安防企业竞争的技术热点,在给甲方提供的解决方案中,往往能成为项目招投标中附加值中最大的亮点。
以大数据技术应用为例,据广州市交通部门透露,在近期的节假日期间,交通部门综合利用大数据平台,依靠多部门联动共享出行信息,从发生拥堵到“交通部门咨询现场”,再到发布信息并跟进解决问题,整个过程可以在短短的几分钟内完成。在交通行业,利用大数据技术,智能交通管理系统可以在海量数据、恶劣网络环境和复杂业务处理情况下,实现大量图片、车辆数据、视频数据的时时网络传输和快速持久化存储,同时对任意站点的图像进行显示,对任意站点的视频进行流畅播放、实时进行比对报警,快速进行多条件检索,并且将各类多媒体数据和车辆数据合二为一,在车辆套牌、公安刑侦等方面发挥重大的作用。
在具体的应用上,在城市的各种监控和卡口系统中,通过在后台接入海量的视频数据,并将这些数据进行二次识别,如在西部的一个城市应用上,仅用一个礼拜的时间内,就发现多达5万多条关于伪造、假牌和套牌等信息。未来,智能前端摄像机在算法优化及准确率提高之后,这些智能识别的速度会得到大大的提高。
而从整个智能交通的角度分析,大数据之于智能交通的意义,可以解决跨越行政区域的限制,实现数据信息的共享,在信息集成优势和组合效率上,有助于建立综合性立体的交通信息体系;另外在车辆安全、交通资源配置以及利用大数据的快速性和可预测性能提升交通预测的水平都有极大的帮助。不过,大数据技术目前也存在着巨大的挑战,例如行业数据的安全、视频数据的非结构化转换、模型有效性等都需要持续的探讨和解决。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28