没有大数据支撑的WiFi是没有未来的_数据分析师考试
大数据可谓当下IT领域最时髦的词,其实可以简单的定义为海量数据的获取和存储;而目前说到大数据,我们首先能想到的就是“云计算”、“Hadoop”等。但是大数据远远不仅局限于此。
深耕数据挖掘形成数据环
作为2015年最火的名词之一大数据已经被很多企业所重视。而这之前也有很多企业在数据收集这一块不断努力着。而目前我所在的商用WiFi行业,所强调的盈利模式之一就是大数据。但是目前为止,真正做到大数据盈利的运营商少之又少。主要原因就是目前我们所掌握的数据都是孤立的,并没有形成连贯的,封闭的数据环。这些数据并不能作为企业营销的依据。所以目前商用WiFi对于数据的掌握还有很大的一步需要走。虽然目前很多大型商场也都在努力建设自己的免费WiFi服务,希望能在为顾客提供更好服务的同时,也以此抓取每一位网络用户的消费能力、消费轨迹,对这些数据加以分析和整合,据此投放更精准的服务和促销信息。但是因为目前很多商家采集的数据很多都是一些数据孤岛,根本不能够形成一个闭环式的数据链,所以在这一块很有很大的进步空间。
大数据与O2O之千丝万缕
2015年互联网 被提出以后各行各业都开始注重与互联网的联系,这样O2O得到了飞速的发展。而O2O的本质通过线上资源给线下商户引流并且数据最终回到线上。这种情况下商用WiFi作为撬开O2O大门的砖头就扮演重要角色。目前超过90%的智能手机用户会选择WiFi上网,98.%的平板电脑用户会使用WiFi上网,其中53.6%的用户只使用WiFi上网。由此可见不管在何时何地用户对WiFi的依赖已经远远超过了总理都嫌弃的流量。
而WiFi为的作为O2O的敲门砖就显示出了大数据与O2O之前的千丝万缕的联系。O2O的本质是数据再次回到线上,经过分析、提炼得出客人的消费习惯以及消费轨迹进行更加精准的信息推送。但是目前O2O的数据采集以及分析都还是孤立的。因为O2O的数据存在于线上与线下,很多线上的数据存放在运营者的手里。但是线下的数据我们该如何采集,如何掌握就成了问题。目前对于线下数据的采集主要通过如手机APP、电子凭证验证设备等通过某种方式将信息统一收集、整理。不过目前这些仍处于收集阶段,并没有对有用数据做到分析使其增值。所以如何借助数据采集去逐个收集,集中分析和处理得到我们想要的东西对于O2O是至关重要的。
大数据支撑商用WiFi
目前中国的商用WiFi发展与国外相比虽然仍处于初期阶段,但是国内商用WiFi的市场竞争已经异常激烈了。而商用WiFi从最开始的portal广告、流量分析到现在与O2O的紧密结合,利用大数据做精准营销已经成为时代的必然。目前我们的数据采集还处于萌芽阶段并不完善,而如何利用商用WiFi收集的数据来引流,已经成为很多公司最关心的核心领域。数据获取仅仅是一个开始,更为重要的是数据的闭环以及服务的输出。
当用户在iFree WiFi覆盖的范围内不仅可以使用安全稳定高速的免费WiFi还可以获取附近店铺的优惠信息。当客人在中午的时候连接iFreeWiFi 就会收到附近餐厅的优惠券并且准确告诉你餐厅的位置。而且在iFreeWiFi覆盖的餐厅内客人是可以选择WiFi pay买单,直接抵扣了优惠券,这样不仅可以消除客人核销优惠券的尴尬还可以省去排队买单或者等待服务员核对的时间。同时客人在店铺的逗留时间,消费信息等数据会被记录下来,而通过这些数据就可以来分析客人的消费习惯、爱好以及他下一个消费环节在哪?通过数据分析得出结论来给商户吸引客流量。但是如果所有数据不能形成一个闭环的连贯的数据链,那么数据孤岛就是必然会出现的。而商用WiFi目前最需要做的就是让这些数据形成一个数据环,能够通过数据分析出一个人或者是一群人的下一个消费环节在哪?
虽然大数据在商用WiFi行业里还有很多缺陷要完善,但不可否认其是企业未来必须拥有的工具之一,也是商用WiFi行业里必不可少的提升运营服务能力的工具。如何把商用WiFi、O2O、大数据相结合打造商用WiFi生态产业链条,将成为未来商用WiFi企业探索的方向。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21