大数据时代下的智能传播及其盈利模式
信息开放、摩尔定律、社交媒体、数据挖掘技术把我们带入大数据时代,大数据具有量度、频度、速度、维度和温度五个方面的显著特点,并致力于为决策服务。大数据也给传媒业和传播带来了革命性的变化,为了更好地满足用户更为个性化和定制化的需求,传媒业必须从信息稀缺时代的大众传播、信息丰裕时代的互联网传播,快速转变为信息过载时代下的智能传播。而要实现智能传播,关键在于打造基于大数据的信息智能匹配平台,在不断优化用户信息需求的基础上,实现信息和用户需求的智能化匹配。智能传播具有潜力巨大的混合型盈利模式,主要包括信息服务收费、广告、电子商务、舆情增值服务收入和网络行政服务等。
【关键词】大数据;信息智能匹配;智能传播;信息过载
2013年,是大数据和移动互联元年,标志着我们已经进入大数据和移动互联时代。在大数据时代,用户对信息的需求更加个性化、精准化,借助于数据挖掘和分析技术,传播体现出智能化的趋势,而其盈利模式日趋混合化和多元化。
一、大数据时代到来的原动力:信息开放
(一)技术赋权:四次传播革命助推信息开放
从远古到现在,我们经历了文字的发明、古登堡印刷术、电报技术的应用和互联网四次传播革命,每一次传播革命都使得信息的数量和公开程度快速增加。
第一,文字发明打破了时间的限制,使得代际传播成为可能。在文字发明之前,传播只能通过口口相传,信息量极其有限,讲古人也具有很大的权力。在公元前4000年楔形文字出现之后,文字发明带来的第一次传播革命使得代际之间的传播成为可能,也使得信息数量开始大幅度增加。
第二,古登堡印刷术打破了范围限制,使得大范围传播成为可能。在古登堡印刷术出现之前,书籍主要依赖掌握文字的抄书人,一方面,由于抄书人的数量很少,信息积累和传播的范围受到很大的限制;另一方面,抄书人具有很大的权力,甚至比一些王公贵族的权力都大。1450年,古登堡的印刷术,给世界带来了第二次传播革命,此后的50年间,大约有800万本书被印刷,比之前所有的手抄本还多。这些书籍帮助更大范围的人获取知识和信息,使得更大范围的精英能够更好地获得信息。
第三,电报技术打破了时间和距离的制约,使得大范围远距离的传播成为可能。电报技术的发明,带来了第三次传播革命,使得千里之外的信息瞬息可至,不仅大大加快了信息的传播速度,信息的数量也急速增加,使更多的人能够更好地获得信息。
第四,互联网技术打破了为精英所控制的大众传播限制,使得及时、互动的自媒体传播成为可能。发轫于1989年的万维网,带来了第四次传播革命,借助于互联网技术,人人都可能成为自媒体,人人都可以拥有麦克风,一方面打破了信息由精英控制的局面,在很大程度上赋予普通人传播信息的权利;另一方面,由于社交媒体等的推崇,信息数量急速增加,根据ZDNet的数据显示,2013年中国产生的数据总量超过0.8ZB,是2012年的2倍,相当于2009年全球的数据总量。
(二)三大成因汇成大数据时代
第一,摩尔定律使得人类保存数据的能力大大增强。摩尔定律是由英特尔创始人之一的戈登·摩尔于1965年提出来的。其内容为:当价格不变时,集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍。在摩尔定律的推动下,价格以更快的速度下降,即在存储器的性能提高的同时,大约每9个月存储容量的价格就下降一半。这一方面使得人们可以有更大、更快的数据保存能力,另一方面也使得人们能够承担起保存数据的成本。根据相关数据显示,1990年至2013年,计算成本平均每年下滑33%,1MM的晶体管从527美元下降到5美分;存储成本平均每年下滑38%,1G的存储成本从569美元下滑到2美分;带宽成本平均每年下滑27%,1000M的带宽成本从1245美元下滑到16美元。
第二,社交媒体的出现使得人类生产数据的能力增强。Facebook、Twitter、新浪微博、微信等社交类媒体使得每个用户都可以发表自己的言论,并以其及时、互动实现传播效应最大化的特点,使得人们生产数据的能力大大增强。例如,Facebook用户每分钟分享的内容高达246万条,Youtube用户每分钟上传72小时的视频,Twitter用户每分钟发布27.7万条信息。
第三,数据挖掘能力使得人类使用数据的能力大大增强。目前,主流的相关技术主要有以MapReduce和Hadoop为代表的非关系数据分析技术。
(三)政府数据公开力度加大
首先,国际信息公开已初具规模。美国等西方发达国家大力推进数据开放运动,2011年9月20日,美国等8个国家在纽约发起“开放政府联盟”,以向本国社会开放更多的信息。目前,该联盟已经有50多个会员,30多个国家建立了公共数据的开放网站。2012年3月,奥巴马政府公布“大数据研发计划”,以提高和改进人们从海量、复杂的数据中获取知识的能力,发展收集、储存、保留、管理、分析和共享海量数据所需要的核心技术,大数据成为全世界关注的焦点。例如,在美国的“蓝纽扣”计划中,用户可以使用“蓝纽扣”获取个人健康信息,以便管理其健康、经济状况,并与信息提供方交换信息。目前,已有超过1.5亿的美国人能够从健康服务企业、医药实验室、零售药房供应商与州免疫信息数据库获得他们所需要的个人健康数据。
其次,我国也在加快数据开放步伐。国家统计局推出了国家数据开放工程,广东、上海、北京等地都在加快数据开发进程,但是和发达国家相比,开放程度仍然极低。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21