二、大数据面面观
当前,大数据正处于快速发展期,每个人对于大数据都有不同的认识,那么什么是大数据?其基本特征又是什么呢?这就需要我们从多个维度来理解和认识大数据。
(一)何谓大数据
所谓大数据,是指以服务于决策为目的,需要新型数据处理模式才能对其内容进行采集、存储、管理和分析的海量、高增长率和多样化的信息资本。认真分析大数据,其本质体现在如下五个方面:第一,数据量大。相对于传统的抽样调查的数据,大数据无疑是巨大的,尤其是依靠传统的计算手段难以有效计算的。第二,服务于决策。大数据的主要目的是服务于各类决策,能够帮助各类组织和个人大幅度提升决策能力。第三,需要新处理模式。由于大数据数量大且非结构化数据很多,现有的处理模式不能有效处理大数据,需要新处理模式。第四,信息资本。大数据是一种信息资本,而不仅仅是一堆数据和成本。所谓信息资本,是指其能够为政府和企业带来未来经济利益的信息资源,更是和土地、资本、人才等一样的新生产要素。第五,更为复杂。大数据比海量数据更为复杂,海量数据包括结构化和半结构化的交易数据,而大数据除此之外还包括非结构化数据和交互数据。
(二)大数据的特点
大数据在量度、频度、速度、维度和温度五个方面具有显著的特点,具体如下:
第一,在量度方面,具有海量性特点,即大数据规模巨大,当前通常指10TB规模以上的数据量,而且随着数据的迅猛增加,大数据的量级还会进一步增加。
第二,在频度方面,具有高频率的特点,即发生的频率很高,重点在于用户参与与互动而产生的数据。在这方面,传统媒体的发行用户数据的价值就很小,关键在于其发行用户非在线,基本上一年才更新一次。
第三,在速度方面,具有实时性的特点,即大数据能够实时反应。例如,在Google搜索框内输入一个关键词,就能够瞬间呈现与其相关的信息,一旦其反应速度稍有不及,就会有大量的用户流失。
第四,在维度方面,具有全样本、多维度、非结构化的特点,即大数据是全体样本的数据,而不是抽样的数据;大数据是多个维度的数据,而不是单个维度的数据;大数据既有惯常的结构化的数据,也有音频、视频等非结构化的数据,而不仅仅是结构化数据。
第五,在温度方面,具有在线性特点,即大数据是永远在线的,能够随时被调用的,这就要求必须基于用户数量巨大的互联网平台。这些平台记录了用户的行为、情感、思想、爱好与需求,能够科学地分析用户的需求。
此外,可以按照生产的主体不同,把大数据分为商务过程数据(由传统的信息系统产生)、环境状态数据(由传感器产生)、社会行为数据(由社交媒体产生)、物理实体数据(由数字化制造产生)四种类型。当然也可以按照归属主体分为政府数据和企业数据,其中政府数据又分为民意数据、业务数据和环境数据。
(三)大数据蕴含着新思想和新思维
在大数据出现之前的小数据时代,我们只能通过抽样调查的方式来回答“为什么”,即找出“因果关系”,找出事情的前因后果。即使有相关关系的研究,重点也是研究“因果关系”。
在大数据时代,大数据大大拓宽了研究范围,大数据能通过全样本的方式来回答“是什么”,即发现相关关系,这能够帮助我们更好地认识和了解世界。因此,大数据既能处理“因果关系”,又能处理“相关关系”,即不仅能够回答“为什么”,又能够回答“是什么”。
典型的相关关系而非因果关系的案例主要有:沃尔玛啤酒与尿布的混搭;鲨鱼对人类的攻击次数和冰淇淋的销量是正相关的;儿童的蛀牙数量与他们的词汇量是正相关的;在美国,自2004年以来,“体重增加”与“房屋出租”的相关性达到90%。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28