大数据 大政务_数据分析师
政府信息化方面,美国、日本、韩国、新加坡,以及一些欧洲国家,已经早于我们做了很多的实践和尝试。
1993年日本政府开始研究政府信息化和开放的计划,1994年把整个的信息化战略分成了三个阶段、横跨二十年来实施,2015年是最后一年。从战略实施来讲,顶层设计是日本的大数据战略能够快速有效实施很重要的一个原因。日本的大数据由日本内阁和总务省ICT基本战略委员会牵头,渗透到日本的各个部门、各个行业。
日本大数据在实施过程中有三个特点:第一,数据开放。政府牵头,各个企业、各个产业相关的角色都参与进来,大家共同来推进数据的开放和应用。第二,数据流通。开放是一个静态的过程,数据流通指的是整个数据在国家系统里流通,构建了一个生态,渗透到国民经济和社会的方方面面。第三,创新应用。数据开放要设计很多的商业模式,应用到各个领域,包括交通、医疗、教育、民生。政府和社会各界都参与进来,有持续的盈利模式,可以持续运行下去。
日本的过程分三个阶段:第一,e-Japan,要使日本全国各个地方的民众都能够上网;第二,u-Japan,实现了无处不在,所有的信息都能够采集上来。第三,i-Japan,数据流通,产生很多的创新应用,渗透到国民经济中,不光服务政府本身,还要服务整个经济社会,推动经济的发展。
作者05到08年在日本工作,是u-Japan的实施人之一,经历了u-Japan的整个过程。第一,战略目标明确,就是实现任何时间、任何地点、无处不在,无时不有。任何一个角落都能够实现信息覆盖。2008年日本实现了99%的无处不在的信息覆盖。第二,总务省牵头,各级地方政府、各个行业代表,相关产业链的企业都加入,共同制订从基础设施到数据搜集、到上层应用的标准,运行效率非常高。第三,因地制宜、因人制宜。有一个城市叫岭南,经济和文化比较发达,信息化建设在日本属于中上水平,文化很深远,被称为小京都。它需要的应用,一是服务于民生,提升生活的便利性,包括公共交通、公共医疗。二是服务于经济,促进文化旅游。三是建立了一个通道,政府直接把公共信息发布到每一个人、每一个家庭。另外一个城市叫敦赫,是剩下的1%。自然环境非常恶劣,常年有雪,经常封路。它要解决的是基础设施、自然灾害预告和教育。我们针对不同城市的特点,设计u-Japan方案。
现在日本已进入到i-Japan的最后一年。i-Japan阶段的目标是让数字信息技术像空气和水一样融入到每一个角落,向经济技术渗透,助力日本经济发展。这个阶段更注重应用,不光应用到老百姓,还应用到企业、经济,最后实现高度信息化社会。
日本的经验说明,顶层设计、分阶段实施目标战略、数据流通渗透形成生态以及持续的商业模式使信息化的工作持续的运行都很重要。然而日本也有一些弊端,受岛国文化的影响是自成体系且封闭,标准也是自成体系,没办法在全球推广。
美国也是1993年克林顿政府开始,倡导政府信息化、政府信息公开。2012年奥巴马提出大数据战略以后,把这个战略推向高潮。美国顶层设计由白宫直接牵头,各个部委参与到计划中,分阶段实施。美国和日本的战略相比有几个可以借鉴的地方:
第一,美国非常重视大数据立法。什么样的数据要开放,什么样的信息是自由的,有很多立法。第二,更注重数据标准,不光应用于自己国家,还推广到全球,提升了美国在大数据领域的影响力。我们可以依托现在的一带一路战略,制订一套标准,至少在一带一路国家推广我们的标准,增强产业影响力和国家影响力。第三,企业参与,美国比日本的企业参与更多。惠普、IBM、谷歌等等企业都参与到了政府的大数据战略里面。不光促进了政府的发展,还促进了大数据产业的发展,美国在这三点上做的比日本更好一些。
美国和日本相对来说走的比较靠前,现在整个产业信息化程度已经非常高。其他国家,包括韩国、新加坡、法国跟中国基本上是相同水平,我们加速发展,有理由做的更好。
我们需要从各国大数据战略中学习其顶层战略、政企结合以及大数据应用。然而,数据孤岛如何打破,技术平台如何打通、在数据开放和隐私立法的权衡,以及大数据不光应用到企业,还要应用到政府的决策管理中都是我们现在面临的挑战。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21