提升数字阅读质感的数据分析师_数据分析师考试
传统新闻编辑部的工作岗位将越来越少,但一个新兴的职位——数据分析师将成为媒体行业的香饽饽,发挥越来越重要的作用。
数据团队越来越重要
今年,《金融时报》的数字订阅量首次超过了印刷版订阅量,在普遍经营惨淡的报业中可谓风景独好。这个成果背后最大的功臣要属该报的数据分析团队。五六年前,《金融时报》开始推行网站注册系统允许用户付费进入,并组建了不到10人的研究小组,收集分析用户的各种数据及阅读习惯。五六年的时间里,《金融时报》积累了大量关于用户以及如何向其销售订阅与广告业务的数据——比如他们读什么、何时读、喜欢读哪类文章等。这些数据让《金融时报》能够分析出读者在订阅前有何表现,并借此推动潜在用户向付费用户转变;这些数据也能够为广告活动提供最深度的观测监控,给广告客户提供更优质的服务。最终,这些数据推动了《金融时报》经营模式向数据驱动型转变。报纸开始将更多的资源转移到前端的数据编辑与出版,数据分析团队也开始参与到《金融时报》管理层决策的过程之中。
在这几年的发展中,当初的老式研究小组早已经被改造为分工明确的专业化数据分析团队。现在该团队已经扩充至30多人,由数据分析与活动小组、数据产品开发小组和数据处理小组构成。他们用更海量的数据、更快更廉价的计算方式、更先进的软件、更完美的用户界面,开启了全球大企业数据应用的新时代,也让其他同行看到了数据团队对未来媒体的发展是多么重要。
新时代的数据分析师做什么?
实际上,数据分析的工作媒体一直没有间断过,只不过,现在这项工作的内涵早已不同以往。最初,媒体对数据的处理更多只是“统计”,比如统计读者的个人及订阅信息,广告客户的需求信息等。这些数据集中存储在媒体的统计部门,基于数据的研究很少,电子化程度也不高。进入互联网时代,媒体加强了对数据的开发利用和分析,开始运用各种电子表格和运算手法来分析读者。尽管如此,这一阶段的数据处理仍然面临一个问题——研究的成果比较粗浅,很难回应企业的商业需求。因为营销部门和统计部门的人都不太清楚数据到底能解决什么问题以及如何解决。
而进入数据量爆发的移动互联网时代,数据开始被视为生产要素,专业的数据分析师也承担着更艰巨的任务:首先,他们必须能够建立统计模型并进行多维数据分析以掌握用户的行为方式;其次,他们整合的数据要能横跨整个组织结构,并运用综合的、可视化的数据反映广告客户开展活动的情况,以便他们进行调整;第三,他们必须形成一种汇报和管理信息的机制,可以及时回答业务经理们提出的问题,以验证和调整产品方向;此外,他们还要提升从数字订阅用户群体中盈利的能力,需要基于数据提出新的产品创意。而且,上述这一切都必须以收益优先的原则为导向,以提供决策参考为目的。
那么,现在的数据分析在具体操作上和过去有什么不同?以客户行为方式的分析为例,过去的重点在于分析用户“读什么”和“何时读”。这种分析只基于互联网终端,单一且薄弱。在多终端的移动互联网时代,这种分析方法显然不够用了,需要的是更精确、更多维的分析逻辑。比如,《金融时报》的数据分析团队会将不同终端的阅读曲线进行比对,发现在早高峰和晚上,手机和平板终端上的内容消费量超过了电脑端。而平板端的阅读高峰出现得比手机端要早,在入睡前,平板端的阅读量又超过了其他的终端。平板和手机上阅读峰值的转换是很有意思的发现。更有意思的是,分析还发现,每个用户在不同终端的阅读重点是不一样的。一个在电脑、手机端对个人理财信息毫不关注的用户居然在平板端是该信息的重度消费者。诸如此类的种种细节相加,便能勾勒出更为清晰、立体的用户“面貌”,为精准营销提供科学的决策基础。
数据分析师怎样炼成?
时下,数据分析师也被时髦地称作数据科学家(data scientist)。《哈佛商业评论》指出,数据科学家应该是数据黑客、分析者、通讯者和可信赖的顾问这几种身份的综合体。现在能达到这种高度的人才还非常少。他们更多是计算机科学、统计学、机器学习(machine learning)等专业背景出身,和新闻、传播学相去甚远。就算是媒体的数据分析团队,也倾向于启用非媒体背景的人才。比如,《金融时报》打造先进数字化团队时,聘请的都是具有非媒体行业背景的市场营销分析师。从目前来看,学习市场营销、统计学、计算机科学的人才比较有可能担任媒体数据分析师的工作。当然,这些人才不仅需要具备数据统计分析方面的才能,也要有对营销、广告等商业分析方面的见解。能够具备上述能力的数据分析师的薪水十分可观。在英国,他们每天的工资大约在500—650英镑之间。不过,这类人才在全球都是稀缺品。比如美国,大约有44%的新职位需要数据分析人才,但只有23%的供给率。招不到人怎么办?现在美国大约有60%的公司采取外包的方式完成所需的数据分析工作,一些新闻企业也采取这种做法。不过,外包价格昂贵,而且并不一定能够很好地满足企业的需求。从长远来看,媒体组建数据分析师团队是必然趋势。
如今的时代,媒体生态瞬息万变。举个例子,2000年国内某大型传媒集团开会时,其网站负责人就座于最后一排。可之后的5年,网络的发展如火如荼。再开会时,网站负责人已经被安排在第一排就座了。虽然现在数据分析师在很多媒体里还难觅踪影,但可能不需要几年,数据分析团队的负责人也得前排就座了。(作者单位:新华社新闻研究所。本文系2012社科基金课题《推动传统媒体全媒体转型对策研究》阶段性研究成果,
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12