大数据不是万能的,它不适合处理这10件事情
许多企业领导人开始接并期待神奇和奇迹,但却发现大数据带来新的复杂性——且从中获益所需要付出的努力要预计中的多得多。
每个组织机构都对大数据应用寄予厚望,期待它可以解答长期存在的业务问题,让他们在市场集中镇南关,在产品、服务交付中更具竞争力。这种对于大数据获益的预期很难实现,除非给予足够的指导和帮助。 这里列举不适合大数据的10件事情,除非你能够采取正确步骤优化其价值。
大数据不会处理业务问题。人们可以做的,就是要坐下来,在开始使用大数据之前,讨论决定放弃大数据,就使用商业智能取得共识。
IBM公司宣称:每一天都会产生 250万字节的数据,其中大部分属于大数据。不出预料,世界范围内企业所需要管理的数据量呈现指数级增长,由于缺乏清晰有效地数据存储和使用策略,数据将不断堆积,每个企业都陷于数据管理的工作。
对于许多公司来说,确保大数据的安全访问仍然是一个开放式的课题。这是因为对于大数据安全实践的定义远没有系统数据和记录保护这样明确。我们正处在这样的一个时间点上,也就是IT与最终用户一起来确定:谁可以访问哪些级别的大数据,并可以进行相应地分析。
大数据处理数据库管理、服务器管理、软件开发、业务分析技能短缺,许多IT部门关键IT技能的缺失会不断成为企业的负担。
如果有的话,遗留系统记录会较之任何大数据更具有价值。通常情况下,正是这些遗留系统可以为大数据分析提供重要线索,用于回答重要的业务问题。
大数据分析需要并行处理计算机集群和传统IT事务处理和数据仓库系统等不同风格的系统管理,这就意味着能量、冷却、软件硬件消耗,运转这些系统所需要的技巧也不尽相同
传统事务处理系统美妙之处在于其拥有固定长度的数据字段以及全面的数据编辑和验证发方式,这有助于得到一个相对干净的表格呈现。大数据不是这样,他们是非结 构化的数据,可以表现为几乎任何形式。这让大数据的质量成为一个令人头痛的难题。数据质量至关重要,如果你没有它,就不能信任数据查询的结果。
衡量系统投资回报率最常用的方法是监测交易速度,然后推断其获利能力(例如酒店每分钟有多少新的预订)。对于大数据处理来说,交易速度不是好的衡量指标,大 数据缓存和运行分析可能需要数小时甚至数天才可以杀青。衡量大数据处理有效性的一个最好的指标应该是利用率,它应该保持在90%以上(相比于交易系统,其 利用率可能只有20%)。对于大数据来说,确定新的ROI指标尤为重要,因为你还有说服CFO以及其他业务部门的领导。
95%以上的大数据属于“噪音”,对于商业智能的贡献很小或几乎没有。通过数据筛选来进行企业掘金,帮助企业业务进步,这是一个非常艰巨的任务。
多年来,大学和研究中心一直运用大数据实验,试图解答基因组、药物研究以及是否有其他星球生命等令人难以捉摸问题的答案。虽然其中一些算法和查询产生结果更 多还是不确定的,大学和研究对于环境的研究也尚无定论,但这不是企业可以接受的,因此,IT和企业关键决策者需要对预期进行调整和管理。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21