淘宝和网利宝都在用大数据挣钱,你造吗
2003年淘宝诞生,成功超越易趣 (eBay),仅仅数年又成为了中国最大的网购零售平台,也让中国迎来了网购行业的新纪元。
有消息称,淘宝2014年“双11”全日交易额达571.12亿元人民币。不难想象,淘宝如此巨大的交易额背后是有多么庞大的用户群在支撑!据不完全统计,淘宝拥有5亿左右的注册用户数,每天有超过6000万的固定访客,可以说淘宝的成功源于数据的积累!
马云曾说,阿里巴巴本质上就是一家数据公司,做淘宝的目的也不是为了卖货,而是获得所有零售的数据和制造业的数据;做物流也不仅仅为了送包裹,而是要把这些数据合在一起。阿里巴巴对你的了解远远超过你自己,尤其是承载着所有数据的电脑系统会更了解你!如今,我们正从IT时代走向DT时代,即从information technology转向data technology。
阿里巴巴是国内互联网大数据的先驱。自淘宝诞生之初,为了赶超易趣,开始搜集每天的数据,逐渐增强了对数据的粘性。2005年,淘宝研发了第一个数据产品,并迎来第一个数据分析师,成立了第一个数据部门。长期的数据积累、分析、运用,让马云意识到“数据产品要建在一个平台上才有更大的价值”。2008年,国内还没几个人谈论“大数据”的时候,阿里巴巴就把其作为一项公司基本战略,开始建立一个囊括所有与消费相关的数据平台,再以该数据平台为中心建立数据交易中心。
在某种程度来讲,大数据是互联网、信息化程度不断加深的产物,未来将发挥有着强大的功能。大数据的运用让一切变得更加透明,这也要求企业的营销策略要发生重大转变,要以我为中心变成以他人为中心,尤其是要以客户为中心,满足用户的友好体验。
尤其是在新兴的互联网金融领域,不少投资者因“风险控制”对P2P心存芥蒂,平台跑路、平台自融、自设基金池等诸多问问频频出现,引发了诸多思考,但从投资人角度来讲最关心的莫过于资金安全问题。从行业的发展来看,很多有第三方担保机构、小贷公司、即便是有银行托管的平台,都难以打消投资者的安全顾虑。其实,在DT时代,数据才是最有说服力的。不管是客户的营销,还是风控,如果能将大数据合理运用,都将事半功倍!
作为互联网金融行业的新秀,网利宝在细分领域里也做着像淘宝一样的事情。
淘宝给买家和卖家提供了一个交易的平台,而网利宝的本质也是一个信息中介,给借款端和融资端提供交易的场所。在网利宝,有借款需求的中小企业可以借钱,有投资需求的客户可以理财,双方自由交易。
目前,网利宝已经研发了自己的IT数据系统来防范风险。
网利宝CEO赵润龙说, IT数据系统的运用,对于网利宝的成本、效率、风控水平都有很大的提升。
以前,如果企业去银行贷款,银行需要先行派专人考察,调研,才能办理,但人是有成本的,不管是100万贷款,还是1个亿的贷款都要从头到尾摸个遍,以传统人的方式做风控对中小企业实际上物力成本、时间成本是非常高的,尤其是对于中小企业这种短期资金周转服务,银行是就不太愿意去做的。
IT数据系统强调贷前数据的积累,打造风险闭环。
因为网利宝专注于做企业信贷业务,当确定要和哪个行业合作后,首先会找到行业里龙头合作伙伴,一般是与大型企业或者上市公司绑定战略合作,通过该行业里的网络布局,实现IT数据系统的数据对接,这些数据往往是关于行业细分领域里中小企业的。其中,网利宝后台IT系统是收集核心数据的关键所在,可以通过模型分析,确定企业信用好坏,是否符合信贷标准。这样一来,网利宝在行业每个细分领域里涉及的风控模式基本上都是打造风控闭环。
此外,该数据系统在数据录入上没有容量限制,在数据的分析、使用上也更加智能、高效、便捷,也有效保障了网利宝即使交易达20亿,也无一例逾期或违约。DT时代,网利宝完全依赖数据对客户的信用程度作分析,将数据转化为信用,将信用转化为财富,克服了传统银行冗杂的审核程序、低效和高成本等难题。
如今,互联网金融正用互联网的技术、互联网的思想影响、完善,甚至改变着传统行业。网利宝业内独创“产融结合”模式,以产业为切入点,深耕行业细分领域,用互联网金融的方式为产业链中下游一些有借贷需求的中小企业提供融资支持,已经涉足汽车、红木、物流、珠宝、光电等十个传统行业,并在以互联网思维带动这些行业的转型。作为一个在线理财服务平台,网利宝打破传统理财的限制和模式,以专业、高效、贴心的金融服务为近30万的客户带去了极致的投资体验和私人理财的服务。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28