如何对考试成绩进行数据分析(1)-数据分析师考试
一、原始分和标准分的定义
原始分是考试后直接从卷面上得到的分数。
标准分是指通过原始分转化而得到的一种地位量数,它反映考生成绩在全体考生成绩中的位置。因此,无论试题难或易,无论整体原始分偏高或偏低,整体标准分都没有什么变化。
二、标准分的计算
根据教育统计学的原理,标准分Z是原始分与平均分的离差以标准差为单位的分数,用公式表示为:Z=(X-A)/S
其中:X为该次考试中考生个人所得的原始分;A为该次考试中全体考生的平均分;S为该次考试分数的标准差。通过转换后得到的标准分Z在一般情况下都带小数,而且会出现负值,实际使用时不太方便,所以还要对Z分数进行线性变换(T变换): T=500+100Z
这就是我们通常所说的标准分。这种标准分的平均值为500,也就是说,如果某考生的标准分为500,则该生的成绩处于此次考试的中间位置。标准分有如下性质:
⑴平均值为0,标准差为1;
⑵分数之间等距,可以作加减运算;
⑶原始分转换为标准分是线性转换,不会改变原始分的分布形状,也不改变原来分数的位置次序。三、使用标准分比使用原始分有什么好处?
根据教育统计学的原理,原始分转换成标准分的意义可以从下面的比较中反映出来:
⑴单个标准分能够反映考生成绩在全体考生成绩中的位置,而单个原始分则不能。
例如,某考生某科的原始成绩为85分,无法说明其这科成绩究竟如何,因为这与试题的难度有关,与总体考生的分数有关。如果某考生某科的标准分为650,即Z分数为1.5,则通过查正态分布表,查得对应的百分比为0.9332,于是我们知道,该考生的成绩超过了93.32%的考生的成绩,这就是分数解释的标准化。⑵不同学科的原始分不可比,而不同学科的标准分是可比的。
不同的学科,由于试题的难易程度不同,各学科的分数价值也就不同。例如某考生的语文原始成绩为80分,数学原始成绩为70分,从原始分看,其语文成绩优于数学成绩。但如果这次考试全体考生的语文原始分平均为86分,而数学原始分平均为60分,则该考生的语文成绩处于全体考生的平均水平之下,而数学成绩处于全体考生的平均水平之上,即该生的数学成绩实质上优于语文成绩。从标准分的角度来衡量,其语文标准分小于500分,而数学标准分大于500分。由于标准分代表了原始分在整体原始分中的位置,因此是可比的。⑶不同学科的原始分不可加,而不同学科的标准分之间具有可加性。
既然不同学科的原始分不可比,那么也就不可加。多学科成绩,只有在各科成绩的平均值相同、标准差也相同的条件下,才能相加,否则是不科学的。各学科原始分的平均值以及标准差一般都不相同,而各学科的标准分的平均值以及标准差都基本相同,因此,各科的标准分是可加的。
四、什么是增值?
教学增值就是评价时将学生原有基础一并考虑,用以比较原有基础与接受教师教育后成绩增进的幅度。增值评价分为两步:首先根据原有基础得到一个输入值;然后根据教育后的成绩得出一个输出值。输出值与输入值之间的差就是增值,用公式表现就是:增值=输出值-输入值
教学增值评价法是一种借助计算机系统和统计程序。对教师的教学效果(即教师对学生学业成绩的影响程度)做出判断的教师评价方法。
一个教师的教学总会有一定的效果.对学生成绩总会产生的影响,但这种影响范围可大可小,可正可负,而教学增值评价就是将这种影响进行量化,进而遴选积极影响、转化消极影响、促成有效教学、扩大受益群体。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22