企业以数据挖掘利润的两种选择_数据分析师考试
如今,你到哪儿都能听到大数据。别说是亚马逊这样的公司,现在就是一个小的Startup, 每天也能有几个G的数据量。 而像Instagram 这样的照片分享网站,每天轻松就能产生出500T的数据量。 不少企业的CEO们都会问一个问题:“好,现在我有这么多数据,下一步我该怎么做呢?”
一个人, 如果只是站在金矿的土地上而不去挖掘的话, 他也成不了富翁。 同样的, 拥有大量数据并不能代表你的企业就能成功。 这个行业里面成功的是例如亚马逊, NetFlix那样, 能够比竞争对手更好的利用数据的公司。 否则的话, 你也只能干瞪着眼看着一堆Hadoop集群而不知道如何去做。 可是, 要是你能好好的利用你的数据, 你就能够在竞争中领先一步。
数据与金钱往往是连在一起的,但是,究竟如何才能把数据转化为利润呢? 对大多数公司来说, 有两种选择, 一是数据导向的流程, 二是数据导向的产品。
以数据为导向的业务流程:
传统的数据分析师,使用Excel或者会编写SQL语句进行特定查询。 而如今, 这些就远远不够了。 如今的数据科学家, 需要了解小数据时代和大数据时代的各种工具, 包括传统的商业智能工具,新型的大数据分析工具,Teableau、Qlickview、大数据魔镜等。还要会查询语言, 统计, 甚至机器学习等。
好的数据科学家可以帮助企业从分析产品, 比如哪些产品受欢迎, 为什么, 哪些产品用户不喜欢(比如Zynga就是这么做的), 到建立预测模型, 分析将来趋势, 以帮助现在的决策(比如沃尔玛实验室就是在这么做)
如果你是销售软件即服务(SaaS)应用, 数据科学家可以帮助你分析高端客户的特征, 比如他们转化的渠道, 他们的基本共性(年龄, 性别, 收入水平, 地域等),以及他们使用你的应用的特别方式等。 这样, 你可以更加有针对性的设计你的产品功能, 推出针对性的广告,优化市场推广渠道, 从而提高你的利润率。
或者,数据科学家可以基于历史数据, 建立一个准确的预测模型。比如百货公司Target那样,能够确定哪些顾客是怀孕的妇女,或者像一些保险公司一样,能够预测哪些来咨询的潜在客户最有可能转化为客户。
以数据为导向的产品:
除了以数据为导向的流程外, 还可以把利用数据来丰富产品的功能。 有的公司还把数据专门打包成为一个产品来销售。
比如Twitter, 他本身的产品不是数据产品, 但是, 他通过授权其他公司如DataSift这样的公司使用它的数据, DataSift这样的公司则利用Twitter的数据做成针对企业的数据产品来帮助企业更好地利用社交媒体。 还有一些媒体公司, 把观众观看的数据打包, 卖给一些频道或者内容制作公司。
不过, 相对于把数据打包出售直接获取收入, 更多的公司则是利用数据, 提高现有的产品, 使它们更加有效率, 更加智能 更加符合用户需求, 从而直接或间接地增加收入。
这里也有一些例子来说明数据如何使产品更加智能, 更加符合用户需求:
如,为了提高广告平台的点击率, 广告平台通过分析广告播放媒体, 广告本身, 以及用户的行为。 把广告展现给最合适的用户。
又如视频发布平台通过分析用户的观看和互动行为, 给视频制作者关于用户喜好的各种反馈, 从而制作出更加满足用户喜好的视频。 这是一个间接增加收入的例子。 通过数据分析, 来提高视频平台的受欢迎程度。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21