当中心数据资产成为关键
在许多客户服务公司,数据分析意味着整合不同业务部门或渠道的交易数据。这有助于企业深入了解客户与企业网站的交互,或者客户在选择在线购物或线下购物的决策心理。这些公司通常已(或正在)建立新的数据库中心或者数据环境,并提升相关数据管理能力。此外,他们也正在制定新的制度,在保障安全数据访问的同时保护客户隐私并确保核心客户不受匿名骚扰。
针对这些公司,增设首席信息官来领导数据分析战略以及人才建设发展是一种较普遍且可行的方案。职责上,首席信息官致力于发展数据分析基础设备并辅助企业各业务部门适应变革,抓住数据分析的机遇。
举例来说,一家多元化经营客户服务公司,其董事会与高层领导团队皆明白,利用自身多渠道数据库抓牢数据分析机遇将显著改善企业运营状况。意识到中心数据库在公司发展议程中关键性,公司领导指派了一名首席信息官负责并制定公司数据分析战略。
公司管理层认识到各业务部门皆有各自的数据分析侧重方向,如优化推广优惠价或者库存状况。此外,不同的管理团队需要将不同的数据分析结果应用到各自部门中。因此,管理层得出结论:在这些情况下,让数据中心管理分析与前线培训,这样的做法并不可取;应该让首席信息官与各业务部门主管合作,共同且有区别地承担责任。
目前,该首席信息官已经参与了两个核心项目。其一,创建新的基础设施将公司多渠道交易数据与外部社交媒体与竞争性信息结合,并通过直观界面向企业各部门推送数据分析结果;其二,组建数据分析专业团队,对不同业务部门指派专家指导,但专家由中心统一管理。数据分析团队由经验资深的主管带领,该主管向首席信息官报告进程。同时,业务部门主管需要寻找各自数据分析侧重方向,培训一线经理相关技能。
当内部数据分析能力成为企业运营关键
第二种方案。这种方案与第一类方案在集中管理方面存在诸多相似点,但第二种方案具体适用于决定自主搭建数据分析平台而不外包的企业。因此,这些企业通常在内部集中建设数据分析设施与团队,旨在为公司各业务部门创建一个数据分析公共平台,以此创造更多价值。
在一家面向消费者的公司里,数据分析能力与领导力,皆集中于金融与风险管理团队中。过去,这个团队长期负责关键数据相关价值创造。当这家公司开始追求更宏大的数据分析战略时,首席财务官被赋予了数项职责,包括制定基本战略,审查核心风险管理数据分析工具自制或外购决策,调用数据分析团队资源与数据分析能力建设。
然而,完成这些有关数据分析的初期决策后,首席执行官与首席财务官很快意识到需要更多支持来获得更准确的分析结果,协助业务部门调整适应数据分析带来的变化并革新业务部门的某些流程。为实现目标,他们在首席财务官下属团队中内增设了新职位—首席数据官。首席数据官负责信息管理,与业务部门主管合作探索潜在、有价值的内与外部数据(这些数据可能过去从未被发掘)。很多公司会发现,他们非常需要这样能够支持高管工作的业务部门主管,以此发觉更多数据优势,定位数据分析方向从而加快前线应用。
当业务部门规模与复杂数据管理成为关键
不论是集中管理或是其他方式,数据分析的重担将落在每个业务部门或职能部门领导头上。业务部门面临的关键问题在于是否应该增设新职或者要求关键领导人(如首席营销官或者运营总监)在负荷饱和的各业务部门中部署新职责。
一家大型金融服务公司高级管理者综合了解了该方案后,他们认为,在数据分析上加倍投入将显著提升业务部门的竞争力。为了坚定推行该方案,该公司招聘了一位首席分析官。首席分析官向业务一线主管报告并领导与监管由内部顾问、分析模型师、软件工程师组成的数据分析中心。
这种方案大力调整了公司结构。它推进了业务部门数据转型过程。作为高管团队的一员,首席分析官能够为诸多重要决策提供支持,包括制定数据分析战略、定义一线主管职责等。鉴于分析中心由具有跨学科背景的人员构成,首席分析官能够灵活调用分析与软件编程资源,从而加速一线工具开发的进度。同时,工作贯穿各业务部门,首席分析师得以更深刻地了解业务部门具体状况,包括其侧重点、工作模式以及面临的挑战。这有助于工具开发与培训的针对性。业务部门主管与首席分析师每日进行沟通能够让他们更关注数据分析以及应用进程。
这种方案获得了成功之后,该公司继续推进,增设另一新职—首席数据官。首席数据官向首席信息官报告,但每日与首席分析师合作进行数据整合,开发新数据分析工具。
对追求数据分析潜力的公司而言,不久的将来,他们都需要选择何处增设领导职位。对于某些企业,例如此前提到的那家面向消费者公司,当前的高管成员不得不承担更多领导责任,因此有必要增设新的中级职位予以支持。对于其他公司,如上述谈到的金融服务公司,增设一个或更多新的高级管理职位推动数据分析计划可能是最佳解决方案。
所有公司中,高管团队,也许还包括董事会成员,必须认识到支持数据分析发展所需的资源规模。接下来,他们必须小心翼翼地在当前管理水平上增加这些职能,从而有效优化公司核心价值源泉,且不给公司当前结构带来过大冲击。上述这些任务都很艰巨,但这却是唯一切实可行的道路,能够帮助企业利用数据分析技术推动自身发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07