CDA数据分析师 出品
作者:徐杨老师
编辑:Mika
大家好,我是徐杨老师。
上期给大家分享了一些数据分析师面试基础指南,这期给大家分享一些大厂面试的技术难点。
话不多说,进入正题。
在大厂的技术面试中,有两个地方是非常有难度的。很多小伙伴都折在的这两个地方。
第一个地方,算法的笔试题,而且是手写算法的笔试题。
我们知道大部分人在写算法的时候,通常都是把函数的前几个字母打出来,或者变量名的前几个字母打出来。按一下Tab或者按一下快捷键,就可以带出整个的函数名,然后自己就可以继续往后去写了。
但是如果不过我需要你手写一个算法,显然这是不够的。你只有一张白纸,没有快捷键可以帮你自动调出函数名。
比如说,之前就有一位小伙伴在笔试的时候拿到了一个手写算法的题。
题目很简单,就是让他实现一个分类算法。
那么分类算法比较好的有什么?有XGBoost,对吧?于是,小伙伴大笔一挥写下了import XGBoost。
于是,被扣分。
扣分的原因是什么?sklearn里那个包的名字叫什么?叫XGBoost吗?不是,那个包的名字叫XGBClassifier。
所以说如果你不熟悉这个算法语句中的所有细节,你在手写的时候就类似于写一篇英语作文,可是你忘了单词怎么拼。
这是一个很让人痛苦的事情,算法你会,但是你写不出来。
因此这是第一个技术难点,手写算法。
那就要求大家在日常的学习与工作中,一定要把常用的算法语句用的滚瓜烂熟,才可以让我们在这样的问题上有比较好的回答成果。
第二个在大厂面试中的难点是,把一个技术问题往下深挖好几次。
比如说最简单的一个算法回归分析。有可能在面试的时候面试官问你:
—— 同学,线性回归会吗?
—— 当然会。
—— 线性回归不能有共线性,你知道吗?
—— 当然知道。
Ok,开始提问。
什么是线性回归你的共线性?
你解释了一下。我相信在座的小伙伴都可以解释的很清楚。
下面再往下挖一层:怎么检测共线性?
有的小伙伴可能直接就说,共线性嘛,系相关系数就可以啊。
结果被扣分了。为什么?
我们现在要检测的是线性回归里的相关性,那是要考虑偏相关问题的。只用相关技术矩阵可以吗?不够用的,应该用一些更加深入的指标,比如说VIF值等等去检测。
比如说这个问题你正确的回答了出来,检测变量之间的相关性,可以使用VIF值。
那就再往下挖,为什么要检测变量之间的相关性呢?
如果我不考虑这个问题会有怎样的结果出现,那么你不能只回答,如果不考虑共线性问题的话,我这个模型预测效果不好。
显然面试官想要的不是这么直接的回答,他想问你的是这个问题的技术细节。
所以你在这个地方应该回答出的是:
如果我们不处理共线性的问题,就会导致最后最小二乘法所需要的逆矩阵在被计算的时候,这个矩阵的行列式的值就会非常小。于是导致我们求出来的逆矩阵就会非常的大。这是一个非常不好的结果。
你求出的矩阵,用这个矩阵算出来的所有参数的取值全都趋近于正无穷,你觉得这个效果能好吗?显然有问题。
如果到这儿你仍然可以准确的回答出来,这已经被挖了三次了,但是你要知道这个问题还可以继续往后挖。
我们再往后挖就是,如果普遍检测出了一共10个变量,这10个变量普遍VIF值都比较高,我们有什么好的方法来处理?
有同学可能马上就会说,正则化方法嘛。
正则化方法又可以问问题了。
正则化方法有偏还是无偏?用完了以后效果怎么样?哪个包可以实现?
我们发现这种技术问题,面试官可以就一个点给你一直往下深挖好几层。
我看过一个调查,同一个问题,当一般往下深挖到第5层的时候,大部分人就已经回答不出来了。
所以这就要求大家平时在学习与工作中,要把每一个技术细节都掌握好,要把技术细节之间的联系找到。因为往下深挖,其实挖的就是这些技术点之间的联系,这是第二个在大场面之中非常容易折的一个点。
最后,这里再分享一个考试备考过程中人人皆需的模拟题库——CDA考试模拟题库。
题库是紧密结合CDA考试大纲而编写的一套模拟试题库。为顺利通过考试奠定坚实的基础
1、解析详尽:每道题目基本上都配备了详细的解析和答案,帮助你深入理解题目背后的知识点和解题思路。
2、便捷高效:你可以随时随地通过手机或电脑访问题库,进行自主学习和练习,充分利用碎片时间,提高备考效率。
3、模拟考试:题库提供了多套模拟考试试卷,帮助你熟悉考试流程和题型。
以上就是今天给小伙伴们的分享,希望对大家有帮助,谢谢大家。
点击CDA题库链接,获取免费版CDA题库入口,祝考试顺利,快速拿证!
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20