作者:陈熹
来源:早起Python
大家好,又到了python办公自动化专题。在之前我们详细讲解过如何使用Python自动更新Excel表格并调整样式,在上次的自动化案例中要求两个或多个Excel表格数据要匹配/对称才能够自动更新,今天我们再次来解决在数据不对称的情况下如何自动更新表格,这是更常见的情况,也是我遇到的一个具体需求。
现在我们有类似如下一份记录了口袋妖怪名字的分组名单:(未全部展示,实际有A-U组+1个"未分组")
现在有一份更新的名单(仅含名字)
需要根据这份新名单对原来的总表进行更新,即对新名单中的名字按照总表的分组进行更新,剔除不在新名单中的名字,并将新名单中新出现的名字划分到“未分组”中,如上图中的“早小起”
这位读者的需求是一个需要长期重复的任务,每隔一段时间就会拿到一个新名单,需要对总名单进行调整。如果用Excel操作,可能需要反复查找新名单的名字在哪个分组,如果不存在则手动添加到“未分组”,存在则做标记。最后把未做标记的名字删除再删除空隙即可,整个过程十分繁琐,而且若总名单有千万个名字则工作量非常大。因此该工作很适合用Python辅助自动化
Python实现
第一步是导入需要的库并把路径设置好,我还是习惯用函数定位到桌面上利于复用
import os import pandas as pd import numpy as np def GetDesktopPath(): return os.path.join(os.path.expanduser("~"), 'Desktop') path = GetDesktopPath() + '\\data\\'
接着读取两份文件
df1 = pd.read_excel(path + '总名单.xlsx',encoding = 'utf-8',sheet_name = 0,skiprows=1) df2 = df1.iloc[:,1:23] df3 = pd.read_excel(path + '新名单.xlsx',encoding = 'utf-8',sheet_name = 0)
接下来是根据新名单中出现的名字找各自在总表中的分组,思路是用np.where,如下所示
np.where(df2 == '死神板') # (array([7], dtype=int64), array([5], dtype=int64))
返回元组,行列信息都在里面,那么用如下命令即可获得口袋妖怪“死神板”所在的分组
col = np.where(df2 == '死神板')[1][0] df2.columns[col] # 'F组'
有了个思路就可以写个函数,并用apply逐个运用到新名单里的名字上
这里要注意,新名单中的名字在总名单中可能没有,因此需要判断后再取最里面一层数字,否则会出错
def find(x): results = np.where(df2 == x)[1] try: return df2.columns[results[0]] except: return '未分组' df3['备注'] = df3['最新名单'].apply(find)
接下来这个操作就是根据分组把上面的数据框“劈开”
results_lst = [] for index,i in enumerate(df2.columns): results = df3.iloc[np.where(df3['备注']==i)[0].tolist(),0] # 重置索引很重要,为什么重要往下看 results = results.reset_index(drop=True) results_lst.append(results) results_lst
可以看到,结果是一个Series列表,这不正好是pd.concat的对象嘛,由于接下来要横向合并,因此每个Series需要重置索引保证都是从0开始
df_final = pd.concat(results_lst,axis=1) # 记得把列名还原 df_final.columns = df2.columns
整个需求就大致完成了 (两个非口袋妖怪的生物也被识别出来了)
df_final.to_excel(f'{path}整理后表格.xlsx', encoding='gbk', # 编码不一定是gbk index=False, header=True)
最后就是保存并将结果以excel形式输出,如上图所示,我们就使用Python成功完成了一次Excel非对称表格的自动更新,接下来应该使用openpyxl进行样式的修改,而这一部分在之前的文章中有很详细的讲解,本文就不再展开。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10