作者:Baijayanta Roy
来源:towardsdatascience
编译&内容补充:早起Python
在用python进行机器学习或者日常的数据处理中,pandas是最常用的Python库之一,熟练掌握pandas是每一个数据科学家的必备技能,本文将用代码+图片详解Pandas中的四个实用函数!
shift()
假设我们有一组股票数据,需要对所有的行进行移动,或者获得前一天的股价,又或是计算最近三天的平均股价。
面对这样的需求我们可以选择自己写一个函数完成,但是使用pandas中的shift()可能是最好的选择,它可以将数据按照指定方式进行移动!
下面我们用代码进行演示,首先导入相关库并创建示例DataFrame
import pandas as pd import numpy as np df = pd.DataFrame({'DATE': [1, 2, 3, 4, 5], 'VOLUME': [100, 200, 300,400,500], 'PRICE': [214, 234, 253,272,291]})
现在,当我们执行df.shift(1,fill_value=0)即可将数据往下移动一行,并用0填充空值
现在,如果我们需要将前一天的股价作为新的列,则可以使用下面的代码
我们可以如下轻松地计算最近三天的平均股价,并创建一个新的列
向前移动数据也是很轻松的,使用-1即可
更多有关shift函数可以查阅官方文档,总之在涉及到数据移动时,你需要想到shift!
value_counts()
pandas中的value_counts()用于统计dataframe或series中不同数或字符串出现的次数,并可以通过降序或升序对结果对象进行排序,下图可以方便理解。
现在让我们用代码示例,首先是Index对象
下面是Series对象
同时可以对bin参数将结果划分为区间
更多的细节与参数设置,可以阅读pandas官方文档。
mask()
pandas中的mask方法比较冷门,和np.where比较类似,将对cond条件进行判断,如果cond为False,请保留原始值。如果为True,则用other中的相应值替换。
现在我们看下面的DataFrame,在这里我们要更改所有可以被二整除的元素的符号,就可以使用mask
下面是代码实现过程
nlargest()
在很多情况下,我们会遇到需要查找Series或DataFrame的前3名或后5名值的情况,例如,总得分最高的3名学生,或选举中获得的总票数的3名最低候选人
pandas中的nlargest()和nsmallest()是满足此类数据处理要求的最佳答案,下面就是从10个观测值中取最大的三个图解
下面是代码实现过程
但如果有相等的情况出现,那么可以使用first,last,all来进行保留
了解了nlargest()的使用方法后,nsmallest()就显得十分简单,本文就不再赘述,如果还有疑问可以查阅官方文档!
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21