分享
数据科学有志之士最常见的问题之一是 "对于机器学习,我需要知道多少数学?" 希望进入机器学习领域的学生往往将数学视为一个巨大的入门障碍。
行业中的守门人对这种担忧没有帮助,他们给学生贴上了不合格的标签,除非他们拥有该学科的硕士或博士学位。
那么,为了在数据科学行业工作,你需要知道多少数学?
答案是。没有你想象的那么多。
大多数公司在数据的帮助下解决非常类似的用例。他们要求数据科学家建立机器学习模型,可以预测客户流失,进行细分,并预测销售。
用于解决这些问题的方法是相似的,而且任务变得相当重复。没有必要重新发明轮子,他们使用开箱即用的ML算法。
即使出现了需要建立自定义机器学习模型的情况,对特定主题的直观理解也是足够的。你不需要去深究,也绝对不需要成为数学专家来成为数据科学家。
例如,我们知道梯度下降是用来寻找线性回归中的最佳拟合线的。你不需要开始学习如何解决微分方程,你只需要了解微积分的原理,就可以了解到这是如何做到的。
同样,如果你要用Tensorflow构建一个神经网络--你需要进行大量的矩阵操作,但你将在计算机程序的帮助下进行。由于这个原因,你不需要回去练习解代数方程。你只需要了解它们是如何工作的。
在这篇文章中,我将为你指出一些资源,帮助你开始学习数据科学的数学。我将专注于三个领域--线性代数、微积分和统计。
线性代数
线性代数--从基础到前沿。edX上的这门课程将在本科水平上教你线性代数。它从一个缓慢的空间开始,只要你有高中水平的数学知识,你就可以学习这个课程。
这门课程最好的地方是,它用Matlab中的实际例子教你线性代数,这让你通过算法和编程的视角来看待这个学科。如果你的目标是学习机器学习的线性代数,这种学习方法特别有用。
这个课程可以免费试听。如果你想获得结业证书,你可以申请财政援助。
3Blue1Brown--《线性代数精华》:我以前没有上过这门课,但在我自己寻找数学学习资源的过程中,曾多次遇到它。
许多有志于机器学习的人对这门课程深信不疑,因为它为学习者提供了对线性代数的概念性理解。与其学习任意的公式或机械地推导它们,你将获得对线性代数如何工作的直觉。如果你的最终目标是将这些概念应用于机器学习模型,这将是非常有帮助的。
微积分
我推荐两门为机器学习学习微积分的课程。微积分的本质》是3Blue1Brown开设的一门伟大的微积分入门课程。同样,这将为你提供对微积分概念的直观理解,并深入解释公式背后的意义,而不仅仅是让你记住它们。
接下来,你可以学习3Blue1Brown的神经网络系列。如果你知道如何使用Keras等库实现神经网络,但并不真正了解这些模型背后的工作原理,你应该学习这门课程。它为你提供了梯度下降算法的全面解释,以及其背后的微积分概念。
统计数字
概率与统计:To p or not to p? ?-库塞拉
这是我所学过的最好的统计学入门课程之一,由伦敦大学提供。这门课程是针对主修非数学专业的学生,如商业和金融。
正因为如此,统计学概念的解释方式简单易懂,并有许多真实世界的例子。
学习本课程后,你将对描述性和推断性统计、不同的抽样分布、抽样技术、置信区间以及P值的计算方法有所了解。
所有这些概念都可以直接应用于现实世界的数据分析。
统计学习-edX
这是另一个学习机器学习模型背后的直觉的优秀课程。
与本列表中的其他资源一样,本课程不太注重数学公式,而是以概念的方式解释机器学习模型。
然而,要学习这门课程,建议有一些微积分知识,因为导师倾向于使用符号,否则可能会使你感到困惑。
你将学习线性和逻辑回归等概念,以及正则化技术,如脊和套索回归,以及何时使用它们。有一整堂课专门讨论用于减轻过拟合的技术,并解释了这些技术背后的基本数学直觉。
这是我上过的最有帮助的课程之一,因为它帮助我不再把机器学习模型当作黑盒子。我对不同类型的模型应该用在什么地方,什么时候应该应用降维,以及什么时候执行不同种类的特征选择技术有了了解。
我花了很多时间试图回到过去,学习本科阶段的微积分和线性代数。然而,尽管花了很多时间学习公式和解微分方程,我的知识还是有脱节,因为我从来没有完全理解这些概念与机器学习算法的关系。
上述资源是突破这一障碍的好方法,因为它们让你对机器学习背后的数学有一个概念性的理解,而不是把你带入复杂公式和定理的兔子洞。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30