当你在网上搜索时,大多数人都建议你在初级水平上呆上几年,然后再考虑转型或转到其他角色。与初级、中级和高级数据科学家相比,经验水平是有区别的。本文将介绍对所有工作角色的期望,以及向上爬的要求。
你是什么水平?
大多数人都会看数据科学家的技能、经验年限、教育水平、专业知识、管理技能等等。如何区分不同级别的数据科学家的区别,一个很好的理解是,你可以让数据科学家独自完成/处理一项任务多长时间,而不需要对他们进行检查。
用 "你可以让一个人独自完成/处理一项任务而不需要签到的时间有多长?"这个比喻,我们可以把不同的级别划分如下。:
- 初级数据科学家。你通常会每天签到,或者一天两次。他们将与中级和高级数据科学家进行大量的配对编程。
- 中级数据科学家。你将每周或每月检查几次,但是,他们应该有能力。他们还将与高级数据科学家进行配对编程,并在需要时为初级数据科学家提供建议和指导。
- 高级数据科学家。不需要向他们报到,因为他们完全有能力自己处理这个任务。
虽然人们的经验和技能水平很重要,但一个人拥有的知识和经验水平才是能够完成任务的关键。一个初级数据科学家可能会达到一个受阻的地步,并且不知道如何去克服它,而不去咨询高层。中级数据科学家也可能面临困难,但是,他们会更好地掌握如何自己克服困难。而高级数据科学家有足够的经验,能够把事情做好。即使这包括聘请专家或研究人员,他们也知道完成一个项目需要什么。
如果你正在寻找一份高级工作,问问自己 "别人可以让我独自完成/处理一项任务而不检查多久"。你必须对自己完全诚实,否则你将为自己的失败埋下隐患。我并不是说你不能设定目标,不能努力成为最伟大的人。我是说对你目前的经验水平要现实,以帮助你找到正确的角色,并在此基础上不断发展。
如何从初级到中级到高级?
这是一年的开始,我们都在记下我们的计划;与职业或个人有关。我们都在努力实现我们今年的目标。对于所有的数据科学家来说,这里有一些建议,告诉你如何在事业上取得进展,在阶梯上攀升,增加你的收入。
独立性
反思一下 "你能让一个人独自完成/处理一项任务而不检查的时间有多长?"这个问题,这都是基于独立的态度。由于缺乏经验和技能,年轻人往往会问更多的问题,而老年人有能力根据过去的经验做出决定。
这不应该吓到你,让你不敢问问题。问问题没有错,这是你学习的方式。如果你不犯错误,你就不需要经历学习过程,你将永远停滞不前。然而,不要每次都依赖你的同事和高级职员来指导你。当你有问题时,避免直接去找他们,试着自己去想办法。当你明白如何解决这个问题时,你会有一种成就感。如果你不确定你的解决方案,请询问你的经理的意见。他们会感谢你带着解决方案来找他们,而不仅仅是一个问题。
让自己处于不舒服的位置
当你在阴沟里的时候,许多伟大的事情发生了。你把自己从一个不舒服的、不熟悉的洞里爬出来。初中生通常从事较容易的工作,有时非常重复和无聊。如果你觉得自己已经准备好了,就向你的经理提出更具挑战性的任务,以学习和增长你的分析能力。
如果你成功地完成了任务,你的经理或高级数据科学家会认识到这一点,并为你推动晋升。
开始像高级人员那样思考
高级数据科学家可以单独处理任务,这不仅是因为他们的经验水平,而且还因为他们对企业目标的理解。大多数初级数据科学家的任务是孤立的,完成任务的过程不会比它是一个请求更进一步。通过更好地掌握企业的短期和长期目标,能够放眼全局,这将改善你在处理请求或试图解决一个问题时的思维方式。
高级数据科学家不仅根据他们的经验,而且还根据公司的需求做出决定,以帮助公司发展。学习高级数据科学家如何通过结对编程、每周团队建设或1-1的方式来接近和处理问题,将使你进入高级数据科学家的思维模式。
沟通与管理
这些是中级或高级数据科学家的主要软技能,因为他们会经常被要求提供建议、指导和帮助理解一个问题。除了数据团队的其他成员和他们的经理之外,许多初级数据科学家并不需要与许多同事交谈。
作为一名高级数据科学家,能够管理一个数据团队需要良好的沟通和管理技能,以确保业务的顺利进行。如果由高级数据科学家管理的项目出现问题,无论任务是否由他/她完成;他们仍然要承担责任。高级数据科学家应该提高警惕,在错误呈现给利益相关者之前,找出错误。
如果高级人员缺乏沟通,他/她的操作就会崩溃,很快就会意识到由于他们的无能,工作量会落到他们身上。与其要向利益相关者解释为什么输出是错误的,或者为什么做出了错误的决定,不如与你的数据团队进行管理和沟通以避免这些问题才是更好的解决办法。
反馈
“反馈是冠军的早餐。”
-Ken Blanchard
询问反馈是你自我提升的健康催化剂;无论是个人还是与职业相关的。向你的经理询问你的长处和短处,将帮助你了解什么对你有用,什么你需要改进。没有人是完美的,我们总是有办法让自己变得更好。优秀的球员希望被告知真相,因为他们想继续赢下去!"。
我希望这篇文章能帮助你了解你所处的水平,以及你需要做什么来达到下一个水平。我祝愿你在你的旅程中一切顺利!
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13