京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘是从大量的数据中发现并提取有用信息的过程。在数据挖掘中,有许多常用的技术和算法可用于分析数据,并揭示隐藏在其中的模式和关联。下面将介绍一些常见的数据挖掘技术和算法。
关联规则挖掘(Association Rule Mining): 关联规则挖掘是用于发现数据集中的频繁项集和关联规则的技术。通过分析数据集中项之间的关系,可以找到物品之间的相关性。Apriori算法和FP-Growth算法是两种常用的关联规则挖掘算法。
分类算法(Classification): 分类算法是用于将数据集中的实例划分到不同预定义类别的技术。这些算法根据已知实例的特征和类别标签之间的关系进行学习,并用于对新实例进行分类。常见的分类算法包括决策树、朴素贝叶斯、支持向量机和神经网络等。
聚类算法(Clustering): 聚类算法用于将数据集中的实例分成相似的组或簇,使得同一簇内的实例相互之间更为相似,而不同簇之间的实例差异较大。常见的聚类算法包括K均值聚类、层次聚类和DBSCAN等。
异常检测(Anomaly Detection): 异常检测是用于发现与预期模式不符的数据实例的技术。它可以识别数据集中的异常值或离群点,这些点与正常的数据模式存在显著差异。常用的异常检测方法包括基于统计学的方法、基于聚类的方法和基于孤立森林的方法等。
文本挖掘(Text Mining): 文本挖掘是用于从大量文本数据中提取有价值信息的技术。它可以从文本中抽取关键词、识别主题、进行情感分析等。在文本挖掘中,常用的技术包括词袋模型、TF-IDF(词频-逆文档频率)权重计算和主题建模等。
预测建模(Predictive Modeling): 预测建模是使用历史数据来预测未来趋势或结果的技术。通过对已知数据进行建模和训练,可以得出预测模型,并用于对新数据进行预测。常见的预测建模方法包括线性回归、决策树回归和随机森林等。
基于图的数据挖掘(Graph-based Data Mining): 基于图的数据挖掘是利用图结构来表示和分析数据集中实体之间的关系的技术。它可以用于社交网络分析、推荐系统和生物信息学等领域。常见的图数据挖掘方法包括PageRank算法、社区发现和图聚类等。
增强型学习(Reinforcement Learning): 增强型学习是一种通过与环境进行互动来学习最优行为的技术。在数据挖掘中,增强型学习可用于解决序列决策问题,如智能推荐和自动驾驶。Q-Learning和Deep Q-Network(DQN)是常用的增强型学习算法。
以上介绍了一些常见的数据挖掘技术和算法。当然,数据挖掘领域还有许多其他的技术和算法,根据具体问题和数据集的特点选择合适的方法非常重要。
在实际应用中,数据挖掘技术和算法常常结合使用。例如,可以使用关联规则挖掘找到频繁购买项集,然后使用分类算法构建一个购买预测模型;或者使用聚类算法将顾客分成不同的群组,然后使用异常检测算法发现每个群组中的异常行为。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01