前面的假设检验、方差分析基本上都是围绕差异性分析,不论是单个总体还是两个总体及以上,总之都是属于研究“区别”,从本节开始,我们关注“联系”,变量之间的关系分为 函数关系和相关关系。 本节这里重点探讨的是不同类型变量之间的相关性,千万记住一点相关性不代表因果性。除表中列出的常用方法外,还有Tetrachoric、相关系数等。
变量类型 | 变量类型 | 相关系数计算方法 | 示例 |
---|---|---|---|
连续型变量 | 连续型变量 | Pearson(正态)/Spearman(非正态) | 商品曝光量和购买转化率 |
二分类变量(无序) | 连续型变量 | Point-biserial | 性别和疾病指数 |
无序分类变量 | 连续型变量 | 方差分析 | 不同教育水平的考试成绩 |
有序分类变量 | 连续型变量 | 连续指标离散化后当做有序分类 | 商品评分与购买转化率 |
二分类变量 | 二分类变量 | 数学公式: 检验 联合 Cramer's V | 性别和是否吸烟 |
二分类变量(有序) | 连续型变量 | Biserial | 乐器练习时间与考级是否通过 |
无序分类变量 | 无序分类变量 | 数学公式: 检验 / Fisher检验 | 手机品牌和年龄段 |
有序分类变量 | 无序分类变量 | 数学公式: 检验 | 满意度和手机品牌 |
有序分类变量 | 有序分类变量 | Spearman /Kendall Tau相关系数 | 用户等级和活跃程度等级 |
Pearson相关系数度量了两个连续变量之间的线性相关程度;
import random
import numpy as np
import pandas as pd
np.random.seed(10)
df = pd.DataFrame({'商品曝光量':[1233,1333,1330,1323,1323,1142,1231,1312,1233,1123],
'购买转化率':[0.033,0.034,0.035,0.033,0.034,0.029,0.032,0.034,0.033,0.031]})
df
pd.Series.corr(df['商品曝光量'], df['购买转化率'],method = 'pearson') # pearson相关系数
# 0.885789300493948
import scipy.stats as stats
# 假设有两个变量X和Y
X = df['商品曝光量']
Y = df['购买转化率']
# 使用spearmanr函数计算斯皮尔曼相关系数和p值
corr, p_value = stats.pearsonr(X, Y)
print("Pearson相关系数:", corr)
print("p值:", p_value)
# Pearson相关系数: 0.8857893004939478
# p值: 0.0006471519603654732
Spearman等级相关系数可以衡量非线性关系变量间的相关系数,是一种非参数的统计方法,可以用于定序变量或不满足正态分布假设的等间隔数据;
import random
import numpy as np
import pandas as pd
np.random.seed(10)
df = pd.DataFrame({'品牌知名度排位':[9,4,3,6,5,8,1,7,10,2],
'售后服务质量评价排位':[8,2,5,4,7,9,1,6,10,3]})
df
pd.Series.corr(df['品牌知名度排位'], df['售后服务质量评价排位'],method = 'spearman') # spearman秩相关
# 0.8787878787878788
import scipy.stats as stats
# 假设有两个变量X和Y
X = df['品牌知名度排位']
Y = df['售后服务质量评价排位']
# 使用spearmanr函数计算斯皮尔曼相关系数和p值
corr, p_value = stats.spearmanr(X, Y)
print("斯皮尔曼相关系数:", corr)
print("p值:", p_value)
# 斯皮尔曼相关系数: 0.8787878787878788
# p值: 0.0008138621117322101
结论:p = 0.0008<0.05
,表明两变量之间的正向关系很显著。
假设我们想要研究性别对于某种疾病是否存在影响。我们有一个二元变量“性别”(男、女)和一个连续型变量“疾病指数”。我们想要计算性别与疾病指数之间的相关系数,就需要用到Point-biserial相关系数。
import scipy.stats as stats
# 创建一个列表来存储数据
gender = [0, 1, 0, 1, 1, 0]
disease_index = [3.2, 4.5, 2.8, 4.0, 3.9, 3.1]
# 使用pointbiserialr函数计算Point-biserial相关系数和p值
corr, p_value = stats.pointbiserialr(gender, disease_index)
print("Point-biserial相关系数:", corr)
print("p值:", p_value)
# Point-biserial相关系数: 0.9278305692406299
# p值: 0.007624695507848026
结论:p = 0.007<0.05
,表明两变量之间的正向关系很显著。即性别与疾病指数正相关
假设我们想要比较不同教育水平的学生在CDA考试成绩上是否存在显著差异。我们有一个无序分类变量“教育水平”(高中、本科、研究生)和一个连续型变量“考试成绩”。
import pandas as pd
import statsmodels.api as sm
from statsmodels.formula.api import ols
# 创建一个DataFrame来存储数据
data = pd.DataFrame({
'教育水平': ['高中', '本科', '本科', '研究生', '高中', '本科', '研究生'],
'考试成绩': [80, 90, 85, 95, 75, 88, 92]
})
# 使用ols函数创建一个线性模型
model = ols('考试成绩 ~ C(教育水平)', data=data).fit()
# 使用anova_lm函数进行方差分析
anova_table = sm.stats.anova_lm(model, typ=2)
anova_table
结论:p = 0.0102<0.05
,拒绝原假设,表明两变量之间的正向关系很显著。教育水平与考试成绩正相关
将连续型变量离散化后当做有序分类,然后用 有序分类变量 VS 有序分类变量的方法
一项研究调查了不同性别的成年人对在公众场合吸烟的态度,结果如表所示。那么,性别与对待吸烟的态度之间的相关程度
- | 赞同 | 反对 |
---|---|---|
男 | 15 | 10 |
女 | 10 | 26 |
import numpy as np
from scipy.stats import chi2_contingency
observed = np.array([[15, 10],
[10, 26]])
observed
chi2, p, dof, expected = chi2_contingency(observed,correction =False) # correction =False
# 卡方值
# P值
# 自由度:
# 与原数据数组同维度的对应期望值
chi2, p
#(6.3334567901234555, 0.011848116168529757)
结论:p = 0.0118<0.05
,拒绝原假设,表明两变量之间的正向关系很显著。
phi = np.sqrt(chi2/n)
print("phi's V:", phi)
# phi's V: 0.3222222222222222
这里只列出 指标 和 Cramer V指标 的计算,其他计算方式请读者自行研究。
# 计算Cramer's V
contingency_table = observed
n = contingency_table.sum().sum()
phi_corr = np.sqrt(chi2 / (n * min(contingency_table.shape) - 1))
v = phi_corr / np.sqrt(min(contingency_table.shape) - 1)
print("Cramer's V:", v)
# Cramer's V: 0.22878509151645754
import numpy as np
from scipy.stats import pearsonr
# 生成随机的二元变量
binary_variable = np.random.choice([0, 1], size=100)
# 生成随机的连续变量
continuous_variable = np.random.normal(loc=0, scale=1, size=100)
# 注:此处的代码未经严格考证,请谨慎使用
def biserial_correlation(binary_variable, continuous_variable):
binary_variable_bool = binary_variable.astype(bool)
binary_mean = np.mean(binary_variable_bool)
binary_std = np.std(binary_variable_bool)
binary_variable_norm = (binary_variable_bool - binary_mean) / binary_std
corr, _ = pearsonr(binary_variable_norm, continuous_variable)
biserial_corr = corr * (np.std(continuous_variable) / binary_std)
return biserial_corr
# 计算Biserial相关系数
biserial_corr = biserial_correlation(binary_variable, continuous_variable)
print("Biserial相关系数:", biserial_corr)
Biserial相关系数: -0.2061772328681707
参考 检验
参考 检验
Kendall秩相关系数也是一种非参数的等级相关度量,类似于Spearman等级相关系数。
import random
import numpy as np
import pandas as pd
np.random.seed(10)
df = pd.DataFrame({'品牌知名度排位':[9,4,3,6,5,8,1,7,10,2],
'售后服务质量评价排位':[8,2,5,4,7,9,1,6,10,3]})
df
pd.Series.corr(df['品牌知名度排位'], df['售后服务质量评价排位'],method = 'kendall') # Kendall Tau相关系数
# 0.7333333333333333
from scipy.stats import kendalltau
# 两个样本数据
x = df['品牌知名度排位']
y = df['售后服务质量评价排位']
# 计算Kendall Tau相关系数
correlation, p_value = kendalltau(x, y)
print("Kendall Tau相关系数:", correlation)
print("p值:", p_value)
# Kendall Tau相关系数: 0.7333333333333333
# p值: 0.002212852733686067
浮生皆纵,恍如一梦,让我们只争朝夕,不负韶华!
下期将为大家带来《统计学极简入门》之 再看t检验、F检验、检验
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。 它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。 扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
在当今信息爆炸的时代,数据被认为是企业的黄金。然而,仅有大量数据并不足以推动业务成功,关键在于有效地管理和利用这些数据。 ...
2024-12-04欢迎来到数据分析的世界!作为一位初学者,您可能会陷入混乱之中,试图理清诸多概念和工具。本指南将带领您穿越这片知识海洋,探 ...
2024-12-04随着数据在商业和科学领域的广泛应用,数据分析师的需求日益增长。对于初学者而言,打造实战能力至关重要。让我们探索如何通过系 ...
2024-12-04编程与数据分析结合的课程 有一定编程基础的学习者可以选择中国大学MOOC的"Python数据分析与展示"和飞桨AI Studio的"Python数 ...
2024-12-04在当今信息爆炸的时代,数据扮演着至关重要的角色。掌握数据分析技能不仅是一种趋势,更是保持竞争优势的关键。为了帮助您拓展数 ...
2024-12-04探索数据分析的学习路径 数据分析不仅仅是一门技能,更是一种思维方式,让我们一起探索如何从一个初学者逐步成长为数据分析领域 ...
2024-12-04城市需求概况 数据分析师在不同城市间的需求差异显著,主要聚焦于一线及部分新一线城市。以下是详细的分析: 主要需求城市: ...
2024-12-04培养数据感知能力与深刻理解 数据分析师的关键能力之一是培养敏锐的数据感知能力。通过持续的数据探索和可视化分析,我们不仅可 ...
2024-12-04作为一名数据分析师,熟练掌握各种数据库课程对于提升竞争力和专业能力至关重要。本文将深入探讨数据分析师需要学习的主要数据库 ...
2024-12-04在当今数据驱动的世界中,数据分析师扮演着关键角色。他们需要熟练掌握各种工具,以有效处理和分析数据,为业务决策提供支持。让 ...
2024-12-04在当今数据驱动的世界中,数据分析师扮演着至关重要的角色。他们需要不断提升自身技能以适应快速发展的数据科学领域。本文将探讨 ...
2024-12-04在当今数据驱动的世界中,数据分析已成为各行各业的核心。要成为一名优秀的数据分析师,熟练掌握多种编程语言至关重要。不同的编 ...
2024-12-04在当今信息爆炸的时代,数据分析师扮演着关键的角色,他们需要运用多种数据处理技术来从海量数据中提炼出有意义的见解。本文将探 ...
2024-12-04数据分析师薪资概况 数据分析师的薪资水平受地区、行业和经验等因素影响,呈现明显差异。总体来看,数据分析师在薪资待遇上较为 ...
2024-12-04数据分析领域日益受到关注,数据驱动决策已成为企业核心。随着数据需求增长,数据分析师的地位也日益重要。成功在这个领域立足, ...
2024-12-04掌握核心技能 数据分析基石涵盖统计学、数据库管理(如SQL)、编程语言(例如Python或R)以及数据可视化工具(如Tableau和Power ...
2024-12-04在当今数字化时代,数据分析已经成为各行业中至关重要的技能之一。无论是帮助企业做出更明智的决策,还是探索新的商业机会,精通 ...
2024-12-04在当今信息爆炸的时代,数据分析师扮演着关键角色。他们不仅需要广泛的技能,还必须不断学习以跟上行业发展步伐。成为一名优秀的 ...
2024-12-04数据分析师的技能要求 作为一名数据分析师,你需要面对广泛的技能要求和学习挑战。让我们一起探讨成为一名优秀数据分析师所需的 ...
2024-12-04作为一名数据分析师,追求职业成功并脱颖而出于激烈的就业市场,关键在于不断提升自身的竞争力。从掌握多元化的技能组合到持续学 ...
2024-12-04