
import pandas as pd
d = pd.DataFrame(['a', 'b', 'c'],columns = ['A'])
d
A | |
---|---|
0 | a |
1 | b |
2 | c |
将某列元素拼接一列特定字符串
d['A'].str.cat(['A', 'B', 'C'], sep=',')
0 a,A
1 b,B
2 c,C
Name: A, dtype: object
将某列的元素合并为一个字符串
d['A'].str.cat(sep=',')
'a,b,c'
import numpy as np
import pandas as pd
d = pd.DataFrame(['a_b_c', 'c_d_e', np.nan, 'f_g_h'],columns = ['A'])
d
A | |
---|---|
0 | a_b_c |
1 | c_d_e |
2 | NaN |
3 | f_g_h |
将某列的字符串元素进行切分
d['A'].str.split('_')
0 [a, b, c]
1 [c, d, e]
2 NaN
3 [f, g, h]
Name: A, dtype: object
d = pd.DataFrame(['a_b_c', 'c_d_e', np.nan, 'f_g_h'],columns = ['A'])
d['A']
0 a_b_c
1 c_d_e
2 NaN
3 f_g_h
Name: A, dtype: object
d['A'].str.get(2)
0 b
1 d
2 NaN
3 g
Name: A, dtype: object
d = pd.DataFrame(['a_b_c', 'c_d_e', np.nan, 'f_g_h'],columns = ['A'])
d['A']
0 a_b_c
1 c_d_e
2 NaN
3 f_g_h
Name: A, dtype: object
d['A'].str.join("!")
0 a!_!b!_!c
1 c!_!d!_!e
2 NaN
3 f!_!g!_!h
Name: A, dtype: object
d['A'].str.contains('d')
0 False
1 True
2 NaN
3 False
Name: A, dtype: object
d.fillna('0')[d.fillna('0')['A'].str.contains('d')]
A | |
---|---|
1 | c_d_e |
d.fillna('0')[d['A'].fillna('0').str.contains('d|e')]
#表示或的关系用"A|B",表示且用'A.*B|B.*A'
A | |
---|---|
1 | c_d_e |
d['A'].str.replace("_", ".")
0 a.b.c
1 c.d.e
2 NaN
3 f.g.h
Name: A, dtype: object
d['A'].str.repeat(3)
0 a_b_ca_b_ca_b_c
1 c_d_ec_d_ec_d_e
2 NaN
3 f_g_hf_g_hf_g_h
Name: A, dtype: object
d['A'].str.pad(10, fillchar="0")
0 00000a_b_c
1 00000c_d_e
2 NaN
3 00000f_g_h
Name: A, dtype: object
d['A'].str.pad(10, side="right", fillchar="?")
0 a_b_c?????
1 c_d_e?????
2 NaN
3 f_g_h?????
Name: A, dtype: object
d['A'].str.center(10, fillchar="?")
0 ??a_b_c???
1 ??c_d_e???
2 NaN
3 ??f_g_h???
Name: A, dtype: object
d['A'].str.ljust(10, fillchar="?")
0 a_b_c?????
1 c_d_e?????
2 NaN
3 f_g_h?????
Name: A, dtype: object
d['A'].str.rjust(10, fillchar="?")
0 ?????a_b_c
1 ?????c_d_e
2 NaN
3 ?????f_g_h
Name: A, dtype: object
d['A'].str.zfill(10)
0 00000a_b_c
1 00000c_d_e
2 NaN
3 00000f_g_h
Name: A, dtype: object
d['A'].str.wrap(3)
0 a_bn_c
1 c_dn_e
2 NaN
3 f_gn_h
Name: A, dtype: object
d['A'].str.slice(1,3)
0 _b
1 _d
2 NaN
3 _g
Name: A, dtype: object
d['A'].str.slice_replace(1, 3, "?")
0 a?_c
1 c?_e
2 NaN
3 f?_h
Name: A, dtype: object
d['A'].str.count("b")
0 1.0
1 0.0
2 NaN
3 0.0
Name: A, dtype: float64
d['A'].str.startswith("a")
0 True
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.endswith("e")
0 False
1 True
2 NaN
3 False
Name: A, dtype: object
d['A'].str.findall("[a-z]")
0 [a, b, c]
1 [c, d, e]
2 NaN
3 [f, g, h]
Name: A, dtype: object
d['A'].str.match("[d-z]")
0 False
1 False
2 NaN
3 True
Name: A, dtype: object
d['A'].str.extract("([d-z])")
0 | |
---|---|
0 | NaN |
1 | d |
2 | NaN |
3 | f |
d['A'].str.len()
0 5.0
1 5.0
2 NaN
3 5.0
Name: A, dtype: float64
df = pd.DataFrame(['a_b ', ' d_e ', np.nan, 'f_g '],columns = ['B'])
df['B']
0 a_b
1 d_e
2 NaN
3 f_g
Name: B, dtype: object
df['B'].str.strip()
0 a_b
1 d_e
2 NaN
3 f_g
Name: B, dtype: object
df['B'].str.rstrip()
0 a_b
1 d_e
2 NaN
3 f_g
Name: B, dtype: object
df['B'].str.lstrip()
0 a_b
1 d_e
2 NaN
3 f_g
Name: B, dtype: object
d['A'] .str.partition('_')
0 | 1 | 2 | |
---|---|---|---|
0 | a | _ | b_c |
1 | c | _ | d_e |
2 | NaN | NaN | NaN |
3 | f | _ | g_h |
d['A'].str.rpartition('_')
0 | 1 | 2 | |
---|---|---|---|
0 | a_b | _ | c |
1 | c_d | _ | e |
2 | NaN | NaN | NaN |
3 | f_g | _ | h |
d['A'].str.lower()
0 a_b_c
1 c_d_e
2 NaN
3 f_g_h
Name: A, dtype: object
d['A'].str.upper()
0 A_B_C
1 C_D_E
2 NaN
3 F_G_H
Name: A, dtype: object
d['A'].str.find('d')
0 -1.0
1 2.0
2 NaN
3 -1.0
Name: A, dtype: float64
d['A'].str.rfind('d')
0 -1.0
1 2.0
2 NaN
3 -1.0
Name: A, dtype: float64
d['A'].str.index('_')
0 1.0
1 1.0
2 NaN
3 1.0
Name: A, dtype: float64
d['A'].str.rindex('_')
0 3.0
1 3.0
2 NaN
3 3.0
Name: A, dtype: float64
d['A'].str.capitalize()
0 A_b_c
1 C_d_e
2 NaN
3 F_g_h
Name: A, dtype: object
d['A'].str.capitalize()
0 A_b_c
1 C_d_e
2 NaN
3 F_g_h
Name: A, dtype: object
d['A'].str.isalnum()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isalpha()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isdigit()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isspace()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.islower()
0 True
1 True
2 NaN
3 True
Name: A, dtype: object
d['A'].str.isupper()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.istitle()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isnumeric()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isdecimal()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26