feature importance,根据含义就能理解,也就是特征重要性,在预测建模项目中起着非常重要作用,能够提供对数据、模型的见解,和如何进行降维和选择特征,并以此来提高预测模型的的效率和有效性。今天小编为大家带来的是如何理解随机森林中的feature importance,希望对大家有所帮助。
一、简单了解feature importance
实际情况中,一个数据集中往往包含数以万计个特征,如何在其中选择出,结果影响最大的几个特征,并通过这种方法缩减建立模型时的特征数,这是我们最为关心的问题。今天要介绍的是:用随机森林来对进行特征筛选。
用随机森林进行特征重要性评估的思想其实非常简单,简单来说,就是观察每个特征在随机森林中的每颗树上做了多少贡献,然后取平均值,最后对比特征之间的贡献大小。
总结一下就是:特征重要性是指,在全部单颗树上此特征重要性的一个平均值,而单颗树上特征重要性计算方法事:根据该特征进行分裂后平方损失的减少量的求和。
二、feature importance评分作用
1.特征重要性分可以凸显出特征与目标的相关相关程度,能够帮助我们了解数据集
2.特征重要性得分可以帮助了解模型
特征重要性得分通常是通过数据集拟合出的预测模型计算的。查看重要性得分能够洞悉此特定模型,以及知道在进行预测时特征的重要程度。
3.特征重要性能够用于改进预测模型
我们可以通过特征重要性得分来选择要删除的特征(即得分最低的特征)或者需要保留的特征(即得分最高的特征)。这其实是一种特征选择,能够简化正在建模的问题,加快建模过程,在某些情况下,还能够改善模型的性能。
三、python实现随机森林feature importances
import xlrd import csv import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.interpolate import spline #设置路径 path='/Users/kqq/Documents/postgraduate/烟叶原始光谱2017.4.7数字产地.csv' #读取文件 df = pd.read_csv(path, header = 0) #df.info() #训练随机森林模型 from sklearn.cross_validation import train_test_split from sklearn.ensemble import RandomForestClassifier x, y = df.iloc[:, 1:].values, df.iloc[:, 0].values x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, random_state = 0) feat_labels = df.columns[1:] forest = RandomForestClassifier(n_estimators=10000, random_state=0, n_jobs=-1) forest.fit(x_train, y_train) #打印特征重要性评分 importances = forest.feature_importances_ #indices = np.argsort(importances)[::-1] imp=[] for f in range(x_train.shape[1]): print(f + 1, feat_labels[f], importances[f]) #将打印的重要性评分copy到featureScore.xlsx中;plot特征重要性 #设置路径 path='/Users/kqq/Documents/postgraduate/实验分析图/featureScore.xlsx' #打开文件 myBook=xlrd.open_workbook(path) #查询工作表 sheet_1_by_index=myBook.sheet_by_index(0) data=[] for i in range(0,sheet_1_by_index.nrows): data.append(sheet_1_by_index.row_values(i)) data=np.array(data) X=data[:1,].ravel() y=data[1:,] plt.figure(1,figsize=(8, 4)) i=0 print(len(y)) while i![]()
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10