最近python可是大火,各行各业的人都在学习python。既然要学习,那么基础知识就一定要掌握。列表降维了解一下啦!python是如何实现列表将为的呢?其实,python 的内置函数 sum() 能够接收两个参数,当第一个参数是二维列表,第二个参数是一维列表的时候,就能够实现列表降维的效果。下面,一起来看小编跟大家分享的这篇文章吧!
以下文章来源: Python猫
作者: 豌豆花下猫
上个月,学习群里的 S 同学问了个题目,大意可理解为列表降维 ,例子如下:
oldlist = [[1, 2, 3], [4, 5]] # 想得到结果: newlist = [1, 2, 3, 4, 5]
原始数据是一个二维列表,目的是获取该列表中所有元素的具体值。从抽象一点的角度来理解,也可看作是列表解压或者列表降维。
这个问题并不难,但是,怎么写才比较优雅呢?
# 方法一,粗暴拼接法: newlist = oldlist[0] + oldlist[1]
这种方法简单粗暴,需要拼接什么内容,就取出来直接拼接。然而,如果原列表有很多子列表,则这个方法就会变得繁琐了。
我们把原问题升级一下:一个二维列表包含 n 个一维列表元素,如何优雅地把这些子列表拼成一个新的一维列表?
方法一的做法需要写 n 个对象,以及 n - 1 次拼接操作。当然不可行。下面看看方法二:
# 方法二,列表推导式: newlist = [i for j in range(len(oldlist)) for i in oldlist[j]]
这个表达式中出现了两个 for 语句,在第一个 for 语句中,我们先取出原列表的长度,然后构造 range 对象,此时 j 的取值范围是 [0, n-1] 的闭区间。
在第二个 for 语句中,oldlist[j] 指的正是原列表的第 j 个子列表,for i in oldlist[j] 则会遍历取出 j 子列表的元素,由于 j 取值的区间正对应于原列表的全部索引值,所以,最终达到解题目的。
这种方法足够优雅了,而且理解也并不难。
然而,我们是否就能满足于此了呢?有没有其它奇技淫巧,哦不,是其它高级方法呢?F 同学贡献了一个思路:
# 方法三,巧用sum: newlist = sum(oldlist,[])
说实话,这个方法令我大感意外!sum() 函数不是用于求和的么?怎么竟然有此用法?
这个写法利用了什么原理呢?由于我开始时不知道 sum() 函数可以接收两个参数,不清楚它们是怎么用于计算的,所以一度很困惑。但是,当我知道 sum() 的完整用法时,我恍然大悟。
接下来也不卖关子了,直接揭晓吧。
语法:sum(iterable[, start]) ,sum() 函数的第一个参数是可迭代对象,如列表、元组或集合等,第二个参数是起始值,默认为 0 。其用途是以 start 值为基础,再与可迭代对象的所有元素相“加”。
在上例中,执行效果是 oldlist 中的子列表逐一与第二个参数相加,而列表的加法相当于 extend 操作,所以最终结果是由 [] 扩充成的列表。
这里有两个关键点:sum() 函数允许带两个参数,且第二个参数才是起点。 可能 sum() 函数用于数值求和比较多,然而用于作列表的求和,就有奇效。它比列表推导式更加优雅简洁!
至此,前面的升级版问题就得到了很好的回答。简单回顾一下,s 同学最初的问题可以用三种方法实现,第一种方法中规中矩,第二种方法正道进阶,而第三种方法旁门左道(没有贬义,只是说它出人意料,却效果奇佳)。
这道并不难的问题,在众人的讨论与分享后,竟还引出了很有价值的学习内容。前不久,同样是群内的一个问题,也产生了同样的学习效果,详见《Python进阶:如何将字符串常量转为变量?》。
我从中得到了一个启示:应该多角度地思考问题,设法寻求更优解,同时,基础知识应掌握牢固,并灵活贯通起来。
学无止境,这里我还想再开拓一下思路,看看能发现些什么。
1、如果原列表的元素除了列表,还有其它类型的元素,怎么把同类的元素归并在一起呢?
2、如果是一个三维或更高维的列表,怎么更好地把它们压缩成一维列表呢?
3、sum() 函数还有什么知识要点呢?
前两个问题增加了复杂度,解决起来似乎没有“灵丹妙药”了,只能用笨方法分别拆解,逐一解压。
第三个思考题是关于 sum() 函数本身的用法,我们看看官方文档是怎么说的:
The iterable’s items are normally numbers, and the start value is not allowed to be a string.
For some use cases, there are good alternatives to sum(). The preferred, fast way to concatenate a sequence of strings is by calling ''.join(sequence). To add floating point values with extended precision, see math.fsum(). To concatenate a series of iterables, consider using itertools.chain().
sum() 的第二个参数不允许是字符串。如果用了,会报错:
TypeError: sum() can't sum strings [use ''.join(seq) instead]
为什么不建议使用 sum() 来拼接字符串呢?哈哈,文档中建议使用 join() 方法,因为它更快。为了不给我们使用慢的方法,它竟特别限定不允许 sum() 的第二个参数是字符串。
文档还建议,在某些使用场景时,不要用 sum() ,例如当以扩展精度对浮点数求和时,推荐使用 math.fsum() ;当要拼接一系列的可迭代对象时,应考虑使用itertools.chain() 。
浮点数的计算是个难题,我曾转载过一篇《如何在 Python 里面精确四舍五入?》,对此有精彩分析。而itertools.chain() 可以将不同类型的可迭代对象串联成一个更大的迭代器,这在旧文《Python进阶:设计模式之迭代器模式》中也有论及。
不经意间,sum() 函数的注意事项,竟把 Python 其它的进阶内容都联系起来了。小小的函数,竟成为学习之路上的一个枢纽。
前段时间,我还写过 range() 、locals() 和 eval() 等内置函数,也是通过一个问题点,而关联出多个知识点, 获益良多。这些内置函数/类的魔力可真不小啊。
本文到此结束,希望对你有所帮助。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20