Keras 是源于 Theano 或 者TensorFlow 的一个深度学习框架,它的设计来源于Torch,编程语言使用的是 Python ,是一个拥有强大功能、内容抽象,而且高度模块化的神经网络库。
今天小编给大家分享的就是Keras 模型的保存与加载,希望对大家学习和使用Keras 有所帮助。
一、Keras模型保存和加载的基础介绍
Keras模型保存和加载一般是保存成hdf5格式。Keras模型主要有两种,序贯模型即Sequential、以及函数式模型Model,相对来说函数模型Model使用范围更广,序贯模型Sequential可看作是函数模型的一种特殊情况。
两类模型有一些方法是相同的:
model.summary():打印模型概况
model.get_config():返回包含模型配置信息的Python字典。
model.get_layer():依据层名或下标获得层对象
model.get_weights():返回模型权重张量的列表,类型为numpy array
model.set_weights():从numpy array里将权重载入给模型,要求数组具有与model.get_weights()相同的形状。
model.to_json:返回代表模型的JSON字符串,仅包含网络结构,不包含权值。
model.to_yaml:与model.to_json类似,同样可以从产生的YAML字符串中重构模型
model.save_weights(filepath):将模型权重保存到指定路径,文件类型是HDF5(后缀是.h5)
model.load_weights(filepath, by_name=False):从HDF5文件中加载权重到当前模型中, 默认情况下模型的结构将保持不变。如果想将权重载入不同的模型(有些层相同)中,则设置by_name=True,只有名字匹配的层才会载入权重
二、Keras模型保存和加载方式
1.保存所有状态
(1)保存模型和模型图
# 保存模型 model.save(file_path) model_name = '{}/{}_{}_{}_v2.h5'.format(params['model_dir'],params['filters'],params['pool_size_1'],params['pool_size_2']) model.save(model_name) # 保存模型图 from keras.utils import plot_model # 需要安装pip install pydot model_plot = '{}/{}_{}_{}_v2.png'.format(params['model_dir'],params['filters'],params['pool_size_1'],params['pool_size_2']) plot_model(model, to_file=model_plot)
(2)加载模型
from keras.models import load_model model_path = '../docs/keras/100_2_3_v2.h5' model = load_model(model_path)
利弊分析:
a.模型保存和加载就只需一行代码,写起来简单快捷
b.既能保存模型的结构和参数,又能保存训练配置等信息。方便我们从上次训练中断的地方再次进行训练优化。
c.占用空间过大,上传或者同步费时。
2.只保存模型结构和模型参数
(1)保存模型
import yaml import json # 保存模型结构到yaml文件或者json文件 yaml_string = model.to_yaml() open('../docs/keras/model_architecture.yaml', 'w').write(yaml_string) # json_string = model.to_json() # open('../docs/keras/model_architecture.json', 'w').write(json_string) # 保存模型参数到h5文件 model.save_weights('../docs/keras/model_weights.h5')
(2)加载模型
import yaml import json from keras.models import model_from_json from keras.models import model_from_yaml # 加载模型结构 model = model_from_yaml(open('../docs/keras/model_architecture.yaml').read()) # model = model_from_json(open('../docs/keras/model_architecture.json').read()) # 加载模型参数 model.load_weights('../docs/keras/model_weights.h5')
利弊分析:
a.能够节省硬盘空间,便于同步和协作
b.会丢失训练的一部分配置信息
数据分析咨询请扫描二维码
作为数据分析领域的探险家,我们常常面临着选择正确工具和技能的挑战。在这个数字化时代,学会并精通适合行业需求的工具显得尤为 ...
2024-12-03在数据分析领域,掌握多种软件和编程语言至关重要,选择合适的工具取决于个人需求和背景。让我们一起探索常用的数据分析工具及其 ...
2024-12-03在数据驱动的时代,数据分析成为了关键的技能。选择合适的数据分析工具至关重要,因为它们直接影响着你对数据的理解和分析效果。 ...
2024-12-03在当今数字化时代,数据分析已经成为各行各业中至关重要的角色。随着技术的迅猛发展和数据量的爆炸增长,数据分析师需要不断提升 ...
2024-12-03在当今数据驱动的世界中,数据分析已成为企业决策制定和战略规划的关键。其中,数据可视化是将复杂数据转化为简洁、易懂图形的重 ...
2024-12-03在当今信息爆炸的时代,数据扮演着至关重要的角色。学会利用数据进行分析不仅是一种技能,更是一种战略性决策工具。本文将探讨学 ...
2024-12-03揭示数据的无限价值 学习数据分析不仅仅是一种技能,更是探索信息海洋中宝藏的钥匙。数据分析的实用性体现在多个领域,如企业决 ...
2024-12-03在当今信息爆炸的时代,数据扮演着至关重要的角色。成为一名优秀的数据分析师,不仅需要具备技术实力,更需要拥有跨学科的知识储 ...
2024-12-03在当今数据驱动的世界中,成为一名优秀的数据分析师需要具备多方面的技能和知识。从统计学基础到机器学习算法,再到沟通能力和业 ...
2024-12-03在当今信息爆炸的时代,数据分析扮演着至关重要的角色。从商业决策到科学研究,数据分析为我们提供了深刻的洞察力和指导方向。然 ...
2024-12-03数据分析的基础知识 数据分析是一个多步骤且复杂的过程,旨在从数据中提取有价值信息以支持决策。这涉及数据的收集、清洗、转换 ...
2024-12-03数据分析是一门引人入胜且充满挑战的领域,它串联着数据的意义与我们的决策需求。无论你是初学者还是经验丰富的专家,掌握数据分 ...
2024-12-03数据分析培训的就业前景展现出令人振奋的态势。随着大数据、人工智能等前沿技术的快速发展,数据分析在各行各业中的应用愈发广泛 ...
2024-12-03在当今数字化时代,数据分析技能的重要性日益凸显。随着大数据、人工智能等领域的迅速发展,数据分析已经成为各行各业中备受瞩目 ...
2024-12-03作为一名数据分析师,除了扎实的数学基础外,掌握软技能同样至关重要。本文将深入探讨数据分析领域中不可或缺的软技能,并结合个 ...
2024-12-03市场需求与技术驱动 数据分析师的职业前景广阔,市场需求旺盛。在金融、医疗、零售、科技等领域,企业对数据分析师的需求不断攀 ...
2024-12-03市场需求与前景 数据分析师的职业前景广阔,伴随着多元化技能要求和清晰的职业发展路径。 在金融、医疗、零售、科技等领域, ...
2024-12-03作为数据分析师,掌握正确的工具和技能至关重要。在当今数据驱动的世界中,Python作为一种多才多艺的编程语言,在数据分析领域扮 ...
2024-12-03在当今数据驱动的世界中,数据分析师扮演着至关重要的角色。他们需要掌握各种工具和技能来从海量数据中提炼出有价值的信息。其中 ...
2024-12-03数据分析实践是一门引人入胜的艺术,融合了技术与创意,为各行业带来前所未有的洞察力与决策支持。本文将探讨数据分析实战案例的 ...
2024-12-03