卡方分布是著名的三大抽样分布之一,在各种统计检验中都有着重要的意义。小编今天就跟大家分享一下有关卡方分布的一些理论知识,希望对于大家有所帮助。
一、什么是卡方分布?
1、卡方分布来源
卡方分布是阿贝(Abbe)在1863年首次提出的,后来由海尔墨特(Hermert)以及现代统计学的奠基人之一的卡·皮尔逊(C.K. Pearson)分别在1875年和1900年推导出来,是统计学中的非常实用的一个有名的分布。
2、卡方分布定义
概率密度
设X为自由度为的卡方随机变量, 那么它的概率密度函数就是
R代码绘制:
x <- seq(0, 60, 0.005) f_nx <- function(x, n){ x^(n/2-1)*exp(-x/2)/(2^(n/2)*gamma(n/2)) } ## 当然你也可以用R自带的 dchisq()函数来计算概率密度 n <- 1 plot(x, f_nx(x, n), type='l', ylim=c(0, 0.25), ylab=expression(f[n](x))) text(3, 0.25, paste('n =', n)) n <- 4 lines(x, f_nx(x, n), type='l', col='red') text(5, 0.17, paste('n =', n) , col='red') n <- 10 lines(x, f_nx(x, n), type='l', col='blue') text(12, 0.1, paste('n =', n) , col='blue') n <- 20 lines(x, f_nx(x, n), type='l', col='purple') text(20, 0.075, paste('n =', n) , col='purple') n <- 30 lines(x, f_nx(x, n), type='l', col='green') text(30, 0.062, paste('n =', n) , col='green') n <- 40 lines(x, f_nx(x, n), type='l', col='pink') text(44, 0.05, paste('n =', n) , col='pink')
当自由度n越大,概率密度曲线越趋于对称
4、χ2 变量性质:
卡方分布拥有具有k个自由度的,是一个由k个独立标准正态随机变量的和而构成的分布通常用于卡方检验中。
二、什么是卡方检验?
1、卡方检验是一种用途很广的计数资料的假设检验方法。属于非参数检验,主要是对两个或两个以上样本率( 构成比)以及两个分类变量的关联性分析进行对比。卡方检验的根本思想就是比较理论频数和实际频数的吻合程度或者拟合优度问题。/2、卡方检验的计算公式为:
其中,A是实际值,T是理论值。
x2是用于衡量实际值与理论值的差异程度的,这也是卡方检验的核心思想,其主要包含了以下两个信息:
1. 实际值与理论值偏差的绝对大小(由于平方的存在,差异是被放大的)
2. 差异程度与理论值的相对大小
3、
对某无序分类变量各水平在两组或多组间的分布是否一致进行考察可以说是卡方检验最主要的用途了,除此之外.卡方检验还有很多其他用途。主要可以分为以下几个方面:
(1)检验某个连续变量的分布与某种理论分布是否一致。
(2)检验某个分类变量各类出现的概率与指定概率是否一致。
(3)检验某两种方法的结果是否保持一致。
(4)检验某两个分类变量是不是相互独立的。
(5)检验控制某种或者某几种分类因素的作用之后,判断两个分类变量是不是相互独立的。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10