卡方分布是著名的三大抽样分布之一,在各种统计检验中都有着重要的意义。小编今天就跟大家分享一下有关卡方分布的一些理论知识,希望对于大家有所帮助。
一、什么是卡方分布?
1、卡方分布来源
卡方分布是阿贝(Abbe)在1863年首次提出的,后来由海尔墨特(Hermert)以及现代统计学的奠基人之一的卡·皮尔逊(C.K. Pearson)分别在1875年和1900年推导出来,是统计学中的非常实用的一个有名的分布。
2、卡方分布定义
概率密度
设X为自由度为的卡方随机变量, 那么它的概率密度函数就是
R代码绘制:
x <- seq(0, 60, 0.005) f_nx <- function(x, n){ x^(n/2-1)*exp(-x/2)/(2^(n/2)*gamma(n/2)) } ## 当然你也可以用R自带的 dchisq()函数来计算概率密度 n <- 1 plot(x, f_nx(x, n), type='l', ylim=c(0, 0.25), ylab=expression(f[n](x))) text(3, 0.25, paste('n =', n)) n <- 4 lines(x, f_nx(x, n), type='l', col='red') text(5, 0.17, paste('n =', n) , col='red') n <- 10 lines(x, f_nx(x, n), type='l', col='blue') text(12, 0.1, paste('n =', n) , col='blue') n <- 20 lines(x, f_nx(x, n), type='l', col='purple') text(20, 0.075, paste('n =', n) , col='purple') n <- 30 lines(x, f_nx(x, n), type='l', col='green') text(30, 0.062, paste('n =', n) , col='green') n <- 40 lines(x, f_nx(x, n), type='l', col='pink') text(44, 0.05, paste('n =', n) , col='pink')
当自由度n越大,概率密度曲线越趋于对称
4、χ2 变量性质:
卡方分布拥有具有k个自由度的,是一个由k个独立标准正态随机变量的和而构成的分布通常用于卡方检验中。
二、什么是卡方检验?
1、卡方检验是一种用途很广的计数资料的假设检验方法。属于非参数检验,主要是对两个或两个以上样本率( 构成比)以及两个分类变量的关联性分析进行对比。卡方检验的根本思想就是比较理论频数和实际频数的吻合程度或者拟合优度问题。/2、卡方检验的计算公式为:
其中,A是实际值,T是理论值。
x2是用于衡量实际值与理论值的差异程度的,这也是卡方检验的核心思想,其主要包含了以下两个信息:
1. 实际值与理论值偏差的绝对大小(由于平方的存在,差异是被放大的)
2. 差异程度与理论值的相对大小
3、
对某无序分类变量各水平在两组或多组间的分布是否一致进行考察可以说是卡方检验最主要的用途了,除此之外.卡方检验还有很多其他用途。主要可以分为以下几个方面:
(1)检验某个连续变量的分布与某种理论分布是否一致。
(2)检验某个分类变量各类出现的概率与指定概率是否一致。
(3)检验某两种方法的结果是否保持一致。
(4)检验某两个分类变量是不是相互独立的。
(5)检验控制某种或者某几种分类因素的作用之后,判断两个分类变量是不是相互独立的。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21