作者:刘早起
来源:早起Python
大家好,又到了numpy进阶修炼专题。numpy大家应该不陌生了,看了太多的原理讲解之后,用刷题来学习是最有效的方法,本文将带来20个NumPy经典问题,附赠20段实用代码,拿走就用,建议打开Jupyter Notebook边敲边看!
01数据查找
问:如何获得两个数组之间的相同元素
输入:
import numpy as np import pandas as pd import warnings warnings.filterwarnings("ignore") arr1 = np.random.randint(10,6,6) arr2 = np.random.randint(10,6,6)
答案:
arr1 = np.random.randint(10,6,6) arr2 = np.random.randint(10,6,6) print("arr1: %s"%arr1) print("arr2: %s"%arr2) np.intersect1d(arr1,arr2)
02数据修改
问:如何从一个数组中删除另一个数组存在的元素
输入:
arr1 = np.random.randint(10,6,6) arr2 = np.random.randint(10,6,6)
答案:
arr1 = np.random.randint(1,10,10) arr2 = np.random.randint(1,10,10) print("arr1: %s"%arr1) print("arr2: %s"%arr2) np.setdiff1d(arr1,arr2)
03数据修改
问:如何修改一个数组为只读模式
输入:
arr1 = np.random.randint(1,10,10)
答案:
arr1 = np.random.randint(1,10,10) arr1.flags.writeable = False
04数据转换
问:如何将list转为numpy数组
输入:
a = [1,2,3,4,5]
答案:
a = [1,2,3,4,5] np.array(a)
05数据转换
输入:
df = pd.DataFrame({'A':[1,2,3],'B':[4,5,6],'C':[7,8,9]})
答案:
df.values
06数据分析
输入:
arr1 = np.random.randint(1,10,10) arr2 = np.random.randint(1,10,10)
答案:
arr1 = np.random.randint(1,10,10) arr2 = np.random.randint(1,10,10) print("arr1的平均数为:%s" %np.mean(arr1)) print("arr1的中位数为:%s" %np.median(arr1)) print("arr1的方差为:%s" %np.var(arr1)) print("arr1的标准差为:%s" %np.std(arr1)) print("arr1,arr的相关性矩阵为:%s" %np.cov(arr1,arr2)) print("arr1,arr的协方差矩阵为:%s" %np.corrcoef(arr1,arr2))
07数据抽样
问:如何使用numpy进行概率抽样
arr = np.array([1,2,3,4,5])
输入:
arr = np.array([1,2,3,4,5]) np.random.choice(arr,10,p = [0.1,0.1,0.1,0.1,0.6])
答案:
08数据创建
问:如何为数据创建副本
输入:
arr = np.array([1,2,3,4,5])
答案:
#对副本数据进行修改,不会影响到原始数据 arr = np.array([1,2,3,4,5]) arr1 = arr.copy()
09数据切片
问:如何对数组进行切片
输入:
arr = np.arange(10)
备注:从索引2开始到索引8停止,间隔为2
答案:
arr = np.arange(10) a = slice(2,8,2) arr[a] #等价于arr[2:8:2]
10字符串操作
问:如何使用NumPy操作字符串
输入:
str1 = ['I love'] str2 = [' Python']
答案:
#拼接字符串 str1 = ['I love'] str2 = [' Python'] print(np.char.add(str1,str2)) #大写首字母 str3 = np.char.add(str1,str2) print(np.char.title(str3))
以上就是我总结的NumPy经典20题中的10题,你都会吗?并且每题我都只给出了一种解法,而事实上每题都有多种解法,所以你应该思考是否有更好的思路,下一篇继续给你列出另外10题哈!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26