作者:刘早起
来源:早起Python
大家好,这篇是接上篇《numpy学得还不错?来试试这20题(上)》,又到了numpy进阶修炼专题。numpy大家应该不陌生了,看了太多的原理讲解之后,用刷题来学习是最有效的方法,本文将将接下来的10个NumPy经典问题和实用代码附上,建议打开Jupyter Notebook边敲边看!
11数据修改
问:如何对数据向上/下取整
输入:
arr = np.random.uniform(0,10,10)
答案:
arr = np.random.uniform(0,10,10)
print(arr)
###向上取整
print(np.ceil(arr))
###向下取整
print(np.floor(arr) )
12格式修改
问:如何取消默认科学计数显示数据
答案:
np.set_printoptions(suppress=True)
13数据修改
问:如何使用NumPy对二维数组逆序
输入:
arr = np.random.randint(1,10,[3,3])
答案:
arr = np.random.randint(1,10,[3,3])
print(arr)
print('列逆序')
print(arr[:, -1::-1])
print('行逆序')
print(arr[-1::-1, :])
14数据查找
问:如何使用NumPy根据位置查找元素
输入:
arr1 = np.random.randint(1,10,5)
arr2 = np.random.randint(1,20,10)
备注:在arr2中根据arr1中元素以位置查找
答案:
arr1 = np.random.randint(1,10,5)
arr2 = np.random.randint(1,20,10)
print(arr1)
print(arr2)
print(np.take(arr2,arr1))
15数据计算
问:如何使用numpy求余数
输入:
a = 10
b = 3
答案:
np.mod(a,b)
16数据计算
问:如何使用NumPy进行矩阵SVD分解
输入:
A = np.random.randint(1,10,[3,3])
答案:
np.linalg.svd(A)
17数据筛选
问:如何使用NumPy多条件筛选数据
输入:
arr = np.random.randint(1,20,10)
答案:
arr = np.random.randint(1,20,10)
print(arr[(arr>1)&(arr<7)&(arr%2==0)])
18数据修改
问:如何使用numpy对数组分类
备注:将大于等于7,或小于3的元素标记为1,其余为0
输入:
arr = np.random.randint(1,20,10)
答案:
arr = np.random.randint(1,20,10)
print(arr)
print(np.piecewise(arr, [arr < 3, arr >= 7], [-1, 1]))
19数据修改
问:如何使用NumPy压缩矩阵
备注:从数组的形状中删除单维度条目,即把shape中为1的维度去掉
输入:
arr = np.random.randint(1,10,[3,1])
答案:
arr = np.random.randint(1,10,[3,1])
print(arr)
print(np.squeeze(arr))
20数据计算
问:如何使用numpy求解线性方程组
输入:
A = np.array([[1, 2, 3], [2, -1, 1], [3, 0, -1]])
b = np.array([9, 8, 3])
备注:求解Ax=b
答案:
A = np.array([[1, 2, 3], [2, -1, 1], [3, 0, -1]])
b = np.array([9, 8, 3])
x = np.linalg.solve(A, b)
print(x)
以上就是我总结的NumPy经典20题,你都会吗?并且每题我都只给出了一种解法,而事实上每题都有多种解法,所以你应该思考是否有更好的思路!
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21