作者:接地气的陈老师
来源:接地气学堂
很多同学很郁闷:天天喊用户画像,可做了几千个用户标签,可都躺在数据库里吃灰,业务不咋用,咋整。今天拿个具体例子讲解一下,看用户画像这玩意到底咋发挥作用。
请听题:业务方准备推一个6、7、8月,VIP用户到店及送一份果盘的服务,问:数据分析能干点啥?
1、标签的基本用法
你可能自然而然想到:提供VIP用户的标签。这确实是可以做的事,因为“VIP用户到店及送一份果盘”听起来简单,可实操起来,
有了这些配套,整个流程才跑的顺:会员到店以后出示微信卡包,亮明身份;店员点击使用果盘权益,扫条码果盘出库,端给会员吃。各个流程都有数据记录,这个权益才能真正落到会员身上。不然少了环节,就会产生灰色账目。比如直接给门店一笔“会员维护费”,鬼知道这些费用会不会变成果盘,会不会吃到会员嘴里,还是最后进了谁的嘴巴或者口袋里。
整个流程中,“VIP用户”就是一个用户标签。它和商品条码一样,起到了串联作用,能让后台、门店都很清楚是谁需要得到服务,得到什么服务,能得多少次服务。有了这些记录,后期才能做深入分析。
很多同学抱怨用户标签吃灰,本质就在于此:没有把标签融合进业务系统,业务流程里去。如果没有CRM,OMS,WMS等系统配合,没有一个门店端水果的流程,那VIP用户标签也就只是个数字标签,没啥作用。
然而,仅仅是停在这个阶段就太简单了。整个需求是业务提的,VIP是按业务规则来的标签,数据分析就是打杂的,这个状态可不好,可要怎么改变一下呢?
2、推动标签应用的两种方式
反问一句:为啥会有6、7、8月到店送果盘这件事?
经过沟通发现,业务的逻辑是这样的。
明白了这层逻辑,我们立即想到,有2种方式可以推动用户画像的应用:
方案1:直接出一个“待消费用户”标签,让销售们抓这些人买单
方案2:为啥非要送果盘,果盘成本多高,多不耐放,出一个“用户需求”标签,看看还能送啥
两个思路,一个是抓人,一个是抓事情。看似差不多,可实行起来难度完全不同。注意,业务已经有了一个VIP送果盘的流程。如果这个流程执行的不好,他们肯定会考虑:“要不要送点其他什么”这时候推方案二就是水到渠成的事。
如果抛开现有流程再推方案一,肯定会收到一堆疑问:
全是事!而且没有一个是数据分析师能搞掂的。
所以方案一往往应用在早起:新项目刚立项,或者老项目改造的启动阶段。这时候业务方内心是一张白纸,可以推很多新内容给他们。而题目的场景是项目已启动,这时候用方案二,更容易借力打力,提高用户画像系统使用率,把标签推广出去。没有审时度势*1,找好推广用户标签的机会,是用户画像系统吃灰的重要原因。
3、深入推广标签的思路
如果采用方案二,第一件事要做的不是急着打标签,而是观察数据。当业务方排脑袋的方案失效的时候,使他们最愿意听建议的时候。这又是审时度势*2的过程,好在数据都在数据分析师手里,所以可以密切关注下面五个指标,来判断业务方到底做的好不好(如下图):
上图列出了业务方逻辑以及我们如何用数据推翻他们的逻辑,注意:在项目执行过程中,想要提一个大家听得进去的意见,最好从下往上,从细节做起。比如先关注哪些果盘浪费严重的店,帮业务方做好执行,赢得信任。如果执行做好了,业绩还是不见起色,大家会自然而然的想到:是不是策略出问题了!还可以用什么策略,这时候进一步推动找更复杂的用户标签,业务方也愿意听了。这又是个审时度势*3的事。
如果我们成功的把握机会,推动到业务方思考:还有哪些标签能识别用户需求!这时候就可以进一步的把更多标签卖出去,让用户画像系统更广泛的被使用。这时候贴标签,建议先做整体分类,再细拆。这样每个用户只有一个标签,标签测试有效/无效的时候,可以避免多重活动叠加带来的负面影响,很清楚的看到哪一类标签有用。从而让业务方更好的积累经验,更依赖用户画像系统,而不是自己的经验判断(如下图):
注意:没有检验过的用户标签是没有说服力的。比如我们标识了:果盘爱好者,那理论上6、7、8月他都会使用果盘,或者这个群体使用果盘的概率明显高于其他群体,有了检验,用户标签才有效。有了大量有效的用户标签做支撑,用户画像系统才能更好地发挥作用,更准确的描述用户或构造复杂的模型。
4、小结
本篇里审时度势四个字出现了3次,这是把数据理论应用到企业里很重要的一环。在企业里推动项目需要找准切入点,配合业务节奏,实现业务上效果,才能吸引大家的注意,提升数据分析的地位。所以就要求数据分析师们不要沉迷于加减乘除,更要审时度势*4,借力打力。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21