华尔街传奇人物詹姆斯·西蒙斯(James Simons)运作的大奖章基金(Medallion)在1989-2009的二十年间,平均年收益率为35%,若算上44%的收益提成,则该基金实际的年化收益率可高达60%,比同期标普500指数年均回报率高出20多个百分点。
最为难能可贵的是,纵然是在次贷危机全面爆发的2008年,该基金的投资回报率仍可稳稳保持在80%左右的惊人水准。
西蒙斯通过将数学模型和投资策略相结合,逐步走上神坛,开创了由他扛旗的量化时代。
量化投资,就是利用计算机技术并且采用一定的数学模型去实践投资理念,实现投资策略的过程。
价值投资和趋势投资(技术分析)是引领过去一个世纪的投资方法,随着计算机技术的发展,已有的投资方法和计算机技术相融合,产生了量化投资。
常用的量化投资的工具有R/MATLAB/Python,各有利弊,选择Python的优势在于:
首先,开放,各种平台可以用,开源各种分析工具包,时间系列,机器学习等都方便。文件处理,网络,数据库对接都很容易。
其次,有不同的开源包或者接口支持不同的功用,性能不是问题。
再次,Python已成为人工智能时代流行的语言之一。
更简单,更通用,能做更多的事情,
这也是本次量化投资现场培训选择Python授课的主要原因:
Python量化投资从零基础到实战
时间:2018年4月20-23日 (四天)
安排:上午9:00-12:00;下午1:30-4:30;答疑4:30-5:00
地点:北京市海淀区厂洼街3号丹龙大厦附近
学费:5000元 / 4200元 (仅限全日制在读本科生及硕士生优惠价);食宿自理
我要报名
讲师介绍:
蔡立耑(Terry Tsai),美国伊利诺伊大学金融硕士,华盛顿大学经济学硕士、博士,在国内外如美国、韩国有丰富的授课经验。带领博、硕士生从事投资决策、金融衍生品、风险分析、交易策略等领域的研究。经管之家资深金牌量化投资讲师。
亲身实践各种金融应用,主持研究团队与台湾知名大学与企业合作开展各种金融研究,例如量化投资、风险分析等。在统计套利、金融大数据等领域有丰富的操作经验与授课经验。带领的量化投资研究团队用多种编程语言实现了统计套利以及风险管理自动化程序。
课程特色:
1:现场教学,可现场和老师互动,解决当下的量化投资疑惑;
2:课程内容丰富,囊括了必备的量化投资的理论知识;
3:课程内容新颖,应用前沿的学术理论;
4:教学过程深入浅出,以实例与实作印证所学;
5:学员能掌握Python,能在现实中通过此工具解决量化投资等综合金融问题;
6:可操作性强,将所介绍理论在实战中一一展示,即学即用,在实战中搭建课程的整体脉络。
课程大纲:
一、Python 编程
二、Python数据分析
1. Numpy
2. Pandas
3. Matplotlib
三、MongoDB
四、基本面:大师选股策略
1. 本杰明·格雷厄姆
2. 詹姆斯·奥肖内西
3. 查尔斯·布兰德斯
4. 彼得·林奇
5. 史蒂夫·路佛
五、技术面:择时判断买卖点
1. 捕捉K线形态
(1) 红三兵
(2) 金针探底
(3) 双响炮
(4) 小探兵
(5) 一阳穿三线
2. 趋势分析
(1) W底突破
(2) 关键点买入形态量化策略
(3) 上升三角形突破
(4) 三到五日下跌法策
(5) 上升平台突破
3. 技术指标分析
(1) MACD
(2) KDJ
(3) BOLL
(4) OBV
(5) RSI
(6) MA
六、神经网路与深度学习在量化交易中的应用
1. 神经网络
2. 卷积神经网路
3. 循环神经网路
报名流程:
1:点击“我要报名”,网上填写信息提交;
2:给予反馈,确认报名信息;
3:网上订单缴费;
4:开课前一周发送课程电子版讲义,软件准备及交通住宿指南。
优惠:
现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;
以上优惠不叠加。
联系方式:
魏老师
Tel:010-68478566
Mail:vip@pinggu.org
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13