cda

数字化人才认证

首页 > 行业图谱 >

【干货】“数据敏感”不是天赋!如何培养数据敏感度?

【干货】“数据敏感”不是天赋!如何培养数据敏感度?
2025-02-01
真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数据异常,甚至写出经典的数据分析报告。其实,成为数据大神的关键在于提升数据敏感度。 ...
excel没有数据分析怎么添加
2025-01-17
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功能,但有时候我们可能会发现缺少某些关键的分析工具。例如,数据分析功能未出现在“数 ...

【干货】互联网黑话多?谁说这术语老啊?这术语太棒了:一文读懂数据分析常用术语

【干货】互联网黑话多?谁说这术语老啊?这术语太棒了:一文读懂数据分析常用术语
2025-01-04
在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新语言的基础词汇,是理解数据、与同行有效沟通以及做出明智决策的关键。 一、战略与目 ...
数据分析岗位需要什么技能
2024-12-31
提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的那么“高冷”。对于小白来说,这个领域不仅有趣,还有着相当低的入门门槛! 今天,我 ...

一个失业的阿里P9,对未来很迷茫……

一个失业的阿里P9,对未来很迷茫……
2024-12-19
阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业计算机。毕业即加入阿里当程序员,工作13年,曾经的阿里的 P9,后来离职去了一家创业 ...

 没学历没经验,如何入职大厂?5年字节数据分析经验分享

没学历没经验,如何入职大厂?5年字节数据分析经验分享
2024-12-18
CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之前其实一直很迷茫,因为自己其实也不知道到底适不适合旅游行业,而且上学的时候没有认 ...
学好数据分析需要掌握哪些技能
2024-12-17
在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握一系列关键技能。这些技能涵盖了从基础理论到实际应用的方方面面。让我们一起深入探讨 ...
数据分析师的统计学基础知识
2024-12-15
数据分析师在当今的商业和技术环境中扮演着至关重要的角色,他们的工作对于任何数据驱动的企业来说都是不可或缺的。那么,作为一个成功的数据分析师,需要掌握哪些统计学基础知识呢? 描述性统计 首先,我们从描述性 ...

数据分析原理,很多人装懂,其实连这一步都没搞清楚!

数据分析原理,很多人装懂,其实连这一步都没搞清楚!
2024-12-11
数据分析这门技术,看似“高大上”,但真正懂得其原理的人却不多。很多人以为掌握了几种软件工具就算会数据分析了,但事实上,数据分析的核心远不止如此。 今天,我们就来深入聊聊数据分析的基本原理和关键步骤,带 ...
异常值处理的常用算法
2024-12-06
异常值在数据分析和机器学习中起着至关重要的作用。它们可能源自测量错误、数据损坏,或者代表真实但罕见的事件。这种数据的存在可能会极大地影响我们的分析结果和模型准确性。因此,识别和处理异常值是我们必须认真 ...
SPSS 稳健性检验 方法
2024-12-06
在数据分析中,保证研究结果的可靠性至关重要。SPSS提供了多种稳健性检验方法,用于验证模型的鲁棒性和有效性。这些方法涵盖了从数据、变量到计量方法的各个层面,在不同情境下运用灵活且有效。 从数据出发 调整数据 ...
常用的非参数检验方法有哪些
2024-12-06
数据分析中,非参数检验方法提供了一种强大工具,可在不依赖于特定总体分布的情况下进行统计推断。这些方法适用于各种领域,包括医学和社会科学,尤其是在处理小样本量或数据类型不清晰的情况下。让我们一起探索常用 ...
卡方分布与其他分布的特点差异
2024-12-06
数据分析世界中,概率分布扮演着至关重要的角色,其中卡方分布(χ²分布)作为一种经常被运用的分布,在其特性和与其他分布的异同中展现出独特之处。让我们深入探讨卡方分布的特点以及它与其他分布之间的对比。 非 ...
判别分析的数学基础与公式
2024-12-06
在数据分析领域,判别分析是一项重要的多变量统计分析方法。它能够在已知分类情况下,根据研究对象的特征值判断其类型归属。本文将探讨判别分析的数学基础、常用方法及应用,并解释其重要性和实际意义。 判别分析的 ...
如何利用集成学习优化模型性能
2024-12-06
数据分析领域中,集成学习是一项关键技术,它通过结合多个模型的力量,提升整体预测性能和稳定性。这种方法利用多个个体学习器的智慧,以改善模型的准确度、泛化能力和鲁棒性。我们将深入探讨几种常见的集成学习方法 ...
如何使用SPSS进行假设检验
2024-12-06
当涉及使用SPSS进行假设检验时,步骤至关重要。这些步骤不仅需要逻辑连贯,而且在进行数据分析时也需要精确性和耐心。让我们一起深入探讨如何有效地运用SPSS进行假设检验,从建立假设到解读结果。 建立假设 首先,我 ...
无序多分类logistic回归中的特征选择方法
2024-12-06
在无序多分类Logistic回归中,特征选择是至关重要的一步,直接影响模型性能和解释能力。选择合适的特征可以使模型更加简洁高效,提高预测准确性,从而为数据分析师带来更好的工作成果和职业发展机会。下面将介绍几种 ...
因子分析结果解读方法
2024-12-06
数据分析世界如同一幅抽象画,而因子分析则是我们擦拭、揭示画布背后故事的工具。在这个充满数据的时代,理解因子分析结果的方法至关重要。让我们一起探索这项统计技术的奥秘,并学会如何从中汲取有用的见解。 关键 ...
常见非参数检验方法的统计假设
2024-12-05
在统计分析中,非参数检验方法是一类不依赖于总体分布形式的假设检验方法。这些方法通常应用于处理总体分布未知或不符合特定分布假设(如正态分布)的情况。让我们深入探讨几种常见的非参数检验方法及其相关统计假设 ...
各种假设检验方法的比较
2024-12-05
在统计学中,假设检验是一种验证特定假设是否成立的方法,通过样本数据推断总体参数。不同假设检验方法适用于各种统计场景和问题,具有特定的适用条件和优缺点。 基本概念与方法 假设检验通常涉及原假设(H0)和备择 ...

OK