cda

数字化人才认证

首页 > 行业图谱 >

最新数据分析师 商业分析师 数字化转型学习书单2
2023-10-25
工欲善其事,必先利其器。好用的工具能助力数据从业者高效快速实现分析和决策,再辅助可视化工具将分析结果直观表达。 数据分析工具-Excel+BI Excel图表之道:如何制作专业有效的商务图表(典藏版)   & ...
如何解决数据挖掘中遇到的常见问题?
2023-10-24
数据挖掘是一项关键技术,通过挖掘大量数据的模式、趋势和关联规则,从中获得有价值的信息和知识。然而,在实际应用过程中,数据挖掘也面临着一些常见问题。本文将介绍几种有效的方法来解决数据挖掘中常见的问题。 ...
金融行业常见的数据清洗技术有哪些?
2023-10-17
随着金融领域数据的快速增长,数据清洗成为了金融机构不可或缺的一环。本文将介绍金融行业中常见的数据清洗技术,包括数据去重、异常值处理、缺失值填充、数据标准化和数据转换等方面,并讨论它们的重要性和应用。 ...
数据清洗中经常遇到的问题是什么?
2023-10-11
在数据清洗过程中,人们经常会遇到一些常见问题。下面是其中一些常见的问题: 数据缺失: 数据集中可能存在缺失值,即某些观察结果或属性的值未被记录。这可能是由于技术故障、人为错误或用户不完整填写表 ...
数据预处理中最常见的错误有哪些?
2023-10-11
在数据预处理过程中,常见的错误有许多。下面是一些常见的错误和建议的解决方法。 缺失值处理错误:缺失值是数据集中经常遇到的问题。常见的错误包括简单地删除带有缺失值的行或列,或者用一个默认值来 ...

新零售行业数据中台构建:数字化转型的关键步骤

新零售行业数据中台构建:数字化转型的关键步骤
2023-10-09
导言: 新零售行业正面临着数字化转型的时代浪潮,而数据中台的构建被视为实现数字化转型的关键步骤之一。数据中台以数据为核心,整合、管理和分析各类数据资源,为企业提供决策支持和商业洞察,推动新零售企业从 ...
数据预处理中最常见的错误有哪些?
2023-10-08
在数据预处理过程中,常见的错误有许多。下面是一些常见的错误和建议的解决方法。 缺失值处理错误:缺失值是数据集中经常遇到的问题。常见的错误包括简单地删除带有缺失值的行或列,或者用一个默认值来填充缺失值 ...
数据清洗中经常遇到的问题是什么?
2023-09-28
在数据清洗过程中,人们经常会遇到一些常见问题。下面是其中一些常见的问题: 数据缺失: 数据集中可能存在缺失值,即某些观察结果或属性的值未被记录。这可能是由于技术故障、人为错误或用户不完整填写表单等原因导 ...
如何为机器学习模型准备好的数据?
2023-08-30
在当今数据驱动的时代,机器学习已经成为了许多领域中的重要工具。然而,一个成功的机器学习模型离不开高质量的数据。本文将介绍为机器学习模型准备数据的关键步骤,帮助您提高模型的性能和准确度。 一、数据收集 ...
如何使用Excel进行聚类分析?
2023-08-25
聚类分析是一种常用的数据挖掘技术,它可以将相似的数据点分组成簇。这种分析方法在许多领域都有广泛的应用,如市场细分、客户分类、模式识别等。虽然有许多专业的统计软件可用于执行聚类分析,但对于初学者或不具 ...
如何利用数据分析预测客户流失率?
2023-08-22
在当今竞争激烈的商业环境中,客户流失对企业的影响不可忽视。因此,准确预测客户流失率成为了企业成功的关键之一。幸运的是,借助数据分析技术,我们能够深入挖掘客户行为和模式,从而预测客户流失率。本文将介绍如 ...
如何对大型数据集进行清洗和处理?
2023-08-21
在当今数字化时代,大型数据集成为企业和组织中不可或缺的资产。然而,这些数据通常包含噪声、错误和不一致性,给数据分析带来了挑战。因此,对大型数据集进行清洗和处理是确保准确、可靠分析结果的关键步骤。本文 ...
如何保证平台数据的质量和完整性?
2023-08-18
在信息时代,数据被视为企业最宝贵的资源之一。然而,随着大数据规模和复杂性的增加,保证平台数据的质量和完整性变得尤为重要。本文将探讨一些关键策略,帮助企业确保其平台数据的质量和完整性。 一、建立清晰的数 ...
数据质量管理需要考虑哪些方面?
2023-08-08
在当今数字化时代,数据已成为企业决策和运营的重要依据。然而,数据的价值与可靠性取决于其质量。数据质量管理是一项关键任务,它涉及对数据进行验证、清洗、整合和维护,以确保数据的准确性、完整性和一致性。本文 ...
数据质量管理的最佳实践是什么?
2023-08-08
数据质量管理是确保数据准确性、完整性和一致性的过程。在当今日益数字化的世界中,数据质量管理变得尤为重要,因为有高质量的数据可以支持组织做出明智的决策,并促进业务增长。以下是数据质量管理的最佳实践: ...
如何对大量数据进行分析和处理?
2023-07-21
在当今数字化时代,大数据已成为企业和组织中不可或缺的资源。然而,仅拥有大量的数据并不能带来收益,关键在于如何对这些数据进行分析和处理。本文将介绍对大量数据进行分析和处理的方法和步骤,以助您从海量数据中 ...
如何评估数据质量并进行清洗?
2023-07-05
标题:数据质量评估与清洗方法 导言: 在现代社会,数据扮演着至关重要的角色。然而,大量的数据往往混杂着噪音、错误甚至欺诈性信息,这给数据分析和决策带来了巨大的挑战。因此,评估数据质量并进行清洗是确保数据 ...
如何将数据进行规范化和转换?
2023-07-04
标题:数据规范化和转换:优化分析与决策的关键步骤 导言: 在当今数据驱动的世界中,正确地处理和解释数据是企业取得竞争优势的重要因素之一。然而,原始数据往往存在各种不一致性和异构性,使其难以直接应用于分析 ...
如何构建模型来预测未来趋势?
2023-07-04
标题:构建预测未来趋势模型的方法 导言: 在当今快速变化的世界中,预测未来趋势对于个人和组织都具有重要意义。从金融市场到销售趋势,从天气预报到人口增长,准确地预测未来趋势可以帮助我们做出明智的决策并规划 ...
如何处理海量数据和高维数据?
2023-07-03
处理海量数据和高维数据是现代科学和工程领域中的重要挑战之一。随着技术的发展,我们面对的数据规模和维度越来越大,传统的数据处理方法已经无法满足需求。在这篇文章中,我将探讨如何处理海量数据和高维数据的一些 ...

OK