cda

数字化人才认证

首页 > 行业图谱 >

1234567 6/7
训练神经网络时,训练集loss下降,但是验证集loss一直不下降,这怎么解决呢?
2023-03-30
在机器学习中,训练神经网络是一个非常重要的任务。通常,我们会将数据集分成训练集和验证集,用于训练和测试我们的模型。在训练神经网络时,我们希望看到训练集的损失值(loss)不断下降,这表明随着时间的推移,模 ...
为什么神经网络会存在灾难性遗忘(catastrophic forgetting)这个问题?
2023-03-29
神经网络是一种模拟生物神经系统的计算模型,它具有自适应性和学习能力,可以通过学习来提高其对特定任务或数据的准确性和泛化能力。但是,在神经网络中存在一个严重的问题,那就是灾难性遗忘。 灾难性遗忘是指神经 ...
图神经网络如何在自然语言处理中应用?
2023-03-29
图神经网络是一种新兴的深度学习模型,其可以有效地捕捉非线性关系和复杂数据结构。近年来,图神经网络在自然语言处理领域中得到了广泛应用,特别是在文本分类、命名实体识别、情感分析等任务中取得了很好的效果。 ...
LSTM模型后增加Dense(全连接)层的目的是什么?
2023-03-28
LSTM模型是一种用于处理时序数据的深度学习模型,它能够有效地捕捉时间上的依赖关系。然而,在一些应用场景中,单纯使用LSTM模型可能无法达到预期的效果,这时候可以考虑在LSTM模型后增加Dense(全连接)层来进一步 ...
如何判断深度神经网络是否过拟合?
2023-03-27
深度神经网络是一种强大的机器学习工具,可以用于各种应用,包括图像识别、自然语言处理和推荐系统等。但是,当训练数据过少或模型过于复杂时,可能会导致过拟合问题。本文将介绍如何判断深度神经网络是否过拟合。 ...
图神经网络(GNN)现在可以研究的方向有哪些呢?
2023-03-27
图神经网络(GNN)是近年来机器学习领域中备受关注的一种新型神经网络结构。它主要用于处理图数据,并且在社交网络、生物信息学和交通路网等领域有着广泛的应用。目前,GNN的研究方向涵盖了多个领域,本文将从以下几 ...
LSTM里Embedding Layer的作用是什么?
2023-03-22
LSTM是一种经典的循环神经网络,已经广泛应用于自然语言处理、语音识别、图像生成等领域。在LSTM中,Embedding Layer(嵌入层)是非常重要的一部分,它可以将输入序列中的每个离散变量映射成一个连续向量,从而便于 ...
如何用神经网络实现连续型变量的回归预测?
2023-03-22
神经网络是一种强大的机器学习工具,已被广泛应用于各种预测和分类问题。其中一个常见的应用是使用神经网络进行连续型变量的回归预测。本文将介绍如何使用神经网络完成这个任务。 数据准备 首先,我们需要准备数据 ...
卷积神经网络和深度神经网络的区别是什么?
2023-03-22
卷积神经网络(Convolutional Neural Network,CNN)和深度神经网络(Deep Neural Network,DNN)是两种常见的神经网络架构。它们有许多共同点,但在某些方面也有区别。 首先,卷积神经网络主要用于图像识别和计算机 ...
机器学习算法中 GBDT 和 XGBOOST 的区别有哪些?
2023-03-22
Gradient Boosting Decision Tree (GBDT) 和 Extreme Gradient Boosting (XGBoost) 都是目前机器学习领域中非常流行的算法。两种算法都采用了 boosting 方法来提高分类或回归效果,但在实现细节上还是有一些区别的 ...
深度学习pytorch训练时候为什么GPU占比很低?
2023-03-21
深度学习在过去几年中已经成为了计算机科学领域的一个热门话题。随着越来越多的研究者和工程师对深度学习进行探索,并且采用PyTorch等流行的深度学习框架,GPU也成为了训练深度学习模型时主要的计算资源。然而,在实 ...
神经网络加上注意力机制,精度反而下降,为什么会这样呢?
2023-03-14
近年来,神经网络和注意力机制的结合已经成为了自然语言处理领域中的研究热点。但是,在实际应用中,有时候我们会发现,当将注意力机制加入到神经网络中时,模型的精度反而下降了。为什么会出现这种情况呢?本文将从 ...

数据分析之数据挖掘入门指南

数据分析之数据挖掘入门指南
2022-10-25
数据分析 探索性数据分析(Exploratory Data Analysis,EDA)是指对已有数据在尽量少的先验假设下通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。 常用的第三方库 ...

数据分析师之数据挖掘入门

数据分析师之数据挖掘入门
2022-10-19
数据分析 探索性数据分析(Exploratory Data Analysis,EDA)是指对已有数据在尽量少的先验假设下通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。 常用的第三方库 ...

什么是数据科学

什么是数据科学
2022-10-18
什么是数据科学?它和已有的信息科学、统计学、机器学习等学科有什么不同?作为一门新兴的学科,数据科学依赖两个因素:一是数据的广泛性和多样性;二是数据研究的共性。现代社会的各行各业都充满了数据,这些数据 ...

盘点 | 每个数据分析师都应该了解的6个预测模型

盘点 | 每个数据分析师都应该了解的6个预测模型
2022-08-09
CDA数据分析师 出品 作者:Ivo Bernardo 编译:Mika 数据分析模型有不同的特点和技术,值得注意的是,大多数高级的模型都基于几个基本原理。 当你想开启数 ...
如何学习机器学习的数学知识
2022-02-16
分享  数据科学有志之士最常见的问题之一是  行业中的守门人对这种担忧没有帮助,他们给学生贴上了不合格的标签,除非他们拥有该学科的硕士或博士学位。  那么,为了在数据科学行业 ...

盘点 | 每个数据分析师都应该了解的6个预测模型

盘点 | 每个数据分析师都应该了解的6个预测模型
2022-01-29
CDA数据分析师 出品 编译:Mika 当你想开启数据科学家的职业生涯时,应该学习哪些模型呢?本文中我们介绍了6个在业界广泛使用的模型。 但当你自己试着编程后才会发现,事实实际并非如此。作为一名 ...

CDA职场解读:数据分析师面试大厂常见的技术难点

CDA职场解读:数据分析师面试大厂常见的技术难点
2024-08-13
CDA数据分析师 出品 编辑:Mika 上期给大家分享了一些数据分析师面试基础指南,这期给大家分享一些大厂面试的技术难点。 在大厂的技术面试中,有两个地方是非常有难度的。很多小伙伴都折在的这两个 ...

Pandas/Sklearn进行机器学习之特征筛选,有效提升模型性能

Pandas/Sklearn进行机器学习之特征筛选,有效提升模型性能
2021-11-22
作者:俊欣 来源:关于数据分析与可视化 今天小编来说说如何通过pandas以及sklearn这两个模块来对数据集进行特征筛选,毕竟有时候我们拿到手的数据集是非常庞大的,有着非常多的特征,减少这些特征 ...
1234567 6/7

OK