教育研究如何跟上大数据时代_数据分析师考试
如何能有效地将巨量的数据资源转化为丰硕的教育研究成果,应用于改善教育的决策与实践,对教育研究界来说意义重大。而要实现这个目标,需要完成将数据资源转化为生产要素、合理搭配生产要素、高效完成研究生产、产品的转化与传播四个步骤。
第一步,资源转化为生产要素。
大数据被喻为“第三次浪潮”,其价值已得到商业领域的充分证实。然而,如何把沉睡的数据资源变成具有增值性的生产要素,是教育研究生产的预备步骤。
首先,作为生产要素的数据应具有明晰的价值性。大数据记录的既包括研究对象的实在行为,也包括他们的主观选择,显示了人们应然和实然的表现,且不再拘泥于以往的抽样方式,因为样本=全部。然而在大数据具有先天信效度优势的同时,还伴生着劣势,即数据虽具价值,但单位时间价值的含量可能有所不同。如两个小时的监控录像中也许有用的信息仅2-3秒。此刻,需要研究人员对问题进行明确的界定,并列明清晰、可计算的筛选标准,用以提取该研究需要的有价值数据,而其余的数据“尾矿”,应留存给其他研究者或相关部门挖掘。
其次,作为生产要素的数据可以被标准化。大数据时代要提高对混杂、无序数据的接纳程度,但这种接纳却是研究的大忌。中国人民大学应用统计科学中心主任赵彦云就曾表明,“指标不一致、指标口径不一致、时间不一致、空间不一致、指标体系不一致、分类不一致、编码不一致等,如此杂乱的数据库,基本上连常规的统计整理、统计描述和分析都无法做到。”研究者能做且该做的是,把非结构化信息进行一定标准化处理,将其变成可用于分析的数据,依此来建模并寻找因果关系。
再次,作为生产要素的数据应具有安全性。如各类骚扰短信和电话推荐教育信息让人不胜其烦,各国也多次出现叫停儿童发展数据的相关计划。那么用技术(如匿名化)与立法双重保护信息安全是数据用于研究的前提。
第二步,合理搭配生产要素。
期望在高等教育研究当中使用大数据,单纯投入数据显然是不够的,还需要匹配人力、物力和财力。
一方面,大数据时代最缺乏两类人才:数据科学家和跨学科的学者。大数据的优势在于数据科学家能用不同的算法呈现不同事物之间的相关联系——而这些事物往往不是同一领域或是直接符合我们主观预期的。新一代的教育研究学人需与数据科学家和其他学科专家合作,抑或是自己及时补充此类知识,以便于继续有说服力的探寻教育相关事务的因果联系,丰富人类的教育认知。
另一方面,大数据的运用需要硬件设施的匹配。云计算为存储和利用大数据提供了便利,却仍旧需要对维护与储存的平台系统进行支持。这部分器材造价不菲,且对环境也有一定要求,对巨量的教育数据搜集需要对应的财政投入保障。
第三步,高效完成研究生产。
一方面,研究应体现效率理念。在大数据的背景下,时间性显得格外重要——数据随时随地更新,科研数据的精度可更高,而延误的信息可能毫无价值。
另一方面,研究应呈现更准确的因果关系。大数据为我们展现了多种类型的相关关系,而研究者的责任在于从巨量的资料中挖掘更贴合实际、有说服力和实效的因果关系,厘清其间可能出现的干扰因素,让教育服务变得更精确,更符合个人发展需求。
此外,研究产生的应是更亲民的成品。所谓亲民,是指产品能用更鲜活、通俗、便捷的方式来提供,且产品本身更符合消费者的个人需求。大数据的优势就在于其可以充分地捕捉微观个体特征来进行分析,实现所谓的互动和可视化服务。未来的研究理应是服务友好型,而不再是板着脸说理论。
第四步,产品的转化与传播。
大数据时代不仅为研究者丰富了研究数据与题材,还为研究成果的转化与传播带来了便利。大数据让科研(知识产品)生产更具科学性,它使实践者在先验中成长,使决策者在自信中完善,不仅拓展了教育服务的机会,也改善了教育服务的质量。
但在不断肯定大数据改变我们的研究范式之时,我们也需要提前思考一些问题:大数据的实时更新、动态分析对整体形势的判断是否足够准确?会不会形成依赖而低估经验的价值?会不会消磨我们的创新力?我们的“学习自由”和“研究自由”被机器左右甚至决定?大数据的占据是否会引发新的社会不均等——固化甚至加深贫富差距?在数据处理技术差异大的情况下,大数据的公开是否可能危及国家安全?而到大数据发展到极致之时,大家的决策均享有并依据数据而行,这种动态的判别方式是否可能消解彼此的数据优势,而最终达到新的“数据对冲均衡”,到那时想取得先机还得回归经验
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29