大数据时代从数字化到数据化的演变_数据分析师考试
计算机及电子学的发展让信息化、网络化等说法变得流行起来,归根结底就是数字化,数字化建立在采样定理之上,即在一定条件下,用离散的序列可以完全代表一个连续函数。采样定理让现实世界中连续变化的声音、图像等模拟信息在计算机中用0和1表示成为可能。因此,模数转换(ADC)成了在电子工程师当中普遍知晓的一个概念,数字化成了大众普遍接受的一个名词。
图书、报纸、杂志的数字化是互联网出现以来一项重大的突破,亚马逊公司正是看出其中的商机逐渐成长为全球最大的互联网电商。数字化让知识、想法的分享与传播变得前所未有的容易,同时,音频和视频的数字化也改变了媒体传输的方式,如数码相机、数字电视、数字广播、数字电影等的出现。现实世界开始被大规模地数字化,数字化体现了一种全新的社会生存状态,不断冲击着传统行业。
虽然目前数字化的知识、信息比人类诞生以来积累得还要多,可是数字化内容仅仅在于分享和阅读?数字化信息能否转化为一种生产力?很多人、很多公司发现数字化产生的数据库将会成为一个巨大的宝藏,随之出现的数据化是数字化发展的必然过程,人类当然不满足于分享和学习,从数字化的内容里挖掘更具价值的东西成了新的方向。
数据可能成为未来互联网最核心的部分,单方面来看,大部分的数据都是没有用的,可是从数据化的信息中提取有价值的东西显得更加难能可贵,在数据化时代,如何利用数据并让‘数据说话’是核心的问题,只有这样才能让数据创造价值。
数据化包括数据的采集和数据的处理。数据采集主要是硬件来做的事情,处理器,存储器,传感器的组合竭尽所能地采集需要的数据:手机的GPS传感器不断地定位我们的位置信息,对人和移动装置比如汽车的行为进行采集;重力传感器不仅仅对数字设备的横屏竖屏进行控制,而且能根据重心的位移来记步;手环的血氧传感器采集血氧信息,对健康数据进行监控并预防等。说到底物联网的本质就是在数字化的基础上把现实数据化。
数据的处理就是软件的算法及实现,包括各种软件程序,管理数据的文件系统和数据库系统,以及各种数据处理方法也就是算法,具体包括存贮、加工、分类、归并、计算、排序、转换、检索等,为了保证安全可靠,还有一整套数据安全保密技术。
数据化让人与自然、人与人之间更加贴近,研究认为,未来公司的价值将不是人才,而是在于数据,将来人不会变得越来越无可替代,反而数据的收集与积累更能增加公司的价值,虽然人才与技术是公司不可或缺的,但是这只是工具,就好比是犁,那数据就是土壤,犁只能在土壤上耕耘。很多评估公司开始将公司大量的数据信息作为和硬件、软件、知识产权同等地位,纳入公司市值的估算之内,说明人们越来越重视数据的价值。
美剧《纸牌屋》成功的原因之一就是Netflix第一次在将大数据的分析纳入了影视制作中,严格来说,《纸牌屋》是从3000万付费用户的数据中分析出收视习惯,并对用户喜好进行分析而创作的,其处理的数据库中包含了3000万用户的收视选择、400万评论、300万次主题搜索,最终拍什么?谁来拍?谁来演?怎么播,都是由所有的用户数据里分析得来,也是第一次由数据引导、决定的影视创作案例。
亚马逊对数据的使用又是另外一个成功的例子,网站会根据用户的购买记录和浏览产品信息的历史来判断用户的喜好,从而给用户推荐需要的产品。
谁在进行数据化?很多公司,包括苹果、谷歌、亚马逊、微软等都是不断采集用户的数据,并利用这些数据来预判未来可能出现的各种情况,这些公司的效益都体现在数据上而不是固有的资产。事实上,政府才是数据化的采集者和掌握者,比方说政府掌握着每个居民的身份信息,城市停车场的车位信息等,在中国,一些地方性的政府开始公开一些数据,方便人们阅读和使用,2014年5月,上海市政府召开推进政府数据资源向社会开放会议,开始有序推进各个政府职能部门向社会开放政府数据资源,这一举动将数据从政府手中解放出来,公众可以通过政府数据服务网进行浏览、查询、检索和下载等服务。可以说,在数据化时代,政府显示出了开明的一面。
我们正处在数据主宰一切的时代,地铁、超市、车站、工厂等场所充斥的摄影头是对人类行为数据进行采集,每天我们在网络上的行为痕迹都会被记录下来作为数据来分析和还原,这是机遇也是挑战,虽然从数字化到数据化是一个必然的过程,现实世界的数据化不断挑战传统行业,可是其中也存在着风险,我们每天接收到的垃圾邮件和短信,当我们的隐私被泄露的时候就说明数据化其实是一把双刃剑,数据化带来的风险将是人类不得不面对的问题。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21