大数据时代从数字化到数据化的演变_数据分析师考试
计算机及电子学的发展让信息化、网络化等说法变得流行起来,归根结底就是数字化,数字化建立在采样定理之上,即在一定条件下,用离散的序列可以完全代表一个连续函数。采样定理让现实世界中连续变化的声音、图像等模拟信息在计算机中用0和1表示成为可能。因此,模数转换(ADC)成了在电子工程师当中普遍知晓的一个概念,数字化成了大众普遍接受的一个名词。
图书、报纸、杂志的数字化是互联网出现以来一项重大的突破,亚马逊公司正是看出其中的商机逐渐成长为全球最大的互联网电商。数字化让知识、想法的分享与传播变得前所未有的容易,同时,音频和视频的数字化也改变了媒体传输的方式,如数码相机、数字电视、数字广播、数字电影等的出现。现实世界开始被大规模地数字化,数字化体现了一种全新的社会生存状态,不断冲击着传统行业。
虽然目前数字化的知识、信息比人类诞生以来积累得还要多,可是数字化内容仅仅在于分享和阅读?数字化信息能否转化为一种生产力?很多人、很多公司发现数字化产生的数据库将会成为一个巨大的宝藏,随之出现的数据化是数字化发展的必然过程,人类当然不满足于分享和学习,从数字化的内容里挖掘更具价值的东西成了新的方向。
数据可能成为未来互联网最核心的部分,单方面来看,大部分的数据都是没有用的,可是从数据化的信息中提取有价值的东西显得更加难能可贵,在数据化时代,如何利用数据并让‘数据说话’是核心的问题,只有这样才能让数据创造价值。
数据化包括数据的采集和数据的处理。数据采集主要是硬件来做的事情,处理器,存储器,传感器的组合竭尽所能地采集需要的数据:手机的GPS传感器不断地定位我们的位置信息,对人和移动装置比如汽车的行为进行采集;重力传感器不仅仅对数字设备的横屏竖屏进行控制,而且能根据重心的位移来记步;手环的血氧传感器采集血氧信息,对健康数据进行监控并预防等。说到底物联网的本质就是在数字化的基础上把现实数据化。
数据的处理就是软件的算法及实现,包括各种软件程序,管理数据的文件系统和数据库系统,以及各种数据处理方法也就是算法,具体包括存贮、加工、分类、归并、计算、排序、转换、检索等,为了保证安全可靠,还有一整套数据安全保密技术。
数据化让人与自然、人与人之间更加贴近,研究认为,未来公司的价值将不是人才,而是在于数据,将来人不会变得越来越无可替代,反而数据的收集与积累更能增加公司的价值,虽然人才与技术是公司不可或缺的,但是这只是工具,就好比是犁,那数据就是土壤,犁只能在土壤上耕耘。很多评估公司开始将公司大量的数据信息作为和硬件、软件、知识产权同等地位,纳入公司市值的估算之内,说明人们越来越重视数据的价值。
美剧《纸牌屋》成功的原因之一就是Netflix第一次在将大数据的分析纳入了影视制作中,严格来说,《纸牌屋》是从3000万付费用户的数据中分析出收视习惯,并对用户喜好进行分析而创作的,其处理的数据库中包含了3000万用户的收视选择、400万评论、300万次主题搜索,最终拍什么?谁来拍?谁来演?怎么播,都是由所有的用户数据里分析得来,也是第一次由数据引导、决定的影视创作案例。
亚马逊对数据的使用又是另外一个成功的例子,网站会根据用户的购买记录和浏览产品信息的历史来判断用户的喜好,从而给用户推荐需要的产品。
谁在进行数据化?很多公司,包括苹果、谷歌、亚马逊、微软等都是不断采集用户的数据,并利用这些数据来预判未来可能出现的各种情况,这些公司的效益都体现在数据上而不是固有的资产。事实上,政府才是数据化的采集者和掌握者,比方说政府掌握着每个居民的身份信息,城市停车场的车位信息等,在中国,一些地方性的政府开始公开一些数据,方便人们阅读和使用,2014年5月,上海市政府召开推进政府数据资源向社会开放会议,开始有序推进各个政府职能部门向社会开放政府数据资源,这一举动将数据从政府手中解放出来,公众可以通过政府数据服务网进行浏览、查询、检索和下载等服务。可以说,在数据化时代,政府显示出了开明的一面。
我们正处在数据主宰一切的时代,地铁、超市、车站、工厂等场所充斥的摄影头是对人类行为数据进行采集,每天我们在网络上的行为痕迹都会被记录下来作为数据来分析和还原,这是机遇也是挑战,虽然从数字化到数据化是一个必然的过程,现实世界的数据化不断挑战传统行业,可是其中也存在着风险,我们每天接收到的垃圾邮件和短信,当我们的隐私被泄露的时候就说明数据化其实是一把双刃剑,数据化带来的风险将是人类不得不面对的问题。
数据分析咨询请扫描二维码
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28