家品行业更要依靠大数据分析_数据分析师考试
尽管线下家品卖场不断传出品牌关店的消息,但瑕不掩瑜,依然不乏有年增速超过300%的平台存在,做得好的线下店几乎也是以年增量翻番的速度前进,市场大环境的看好让业内人士对行业信心十足。各大家品平台齐齐将目光锁定在25岁—40岁的人群,他们正是当下市场消费的中流砥柱,家品消费的意识正在萌芽。中国庞大的消费人口基数,为家品行业的全面爆发做好准备。接下来,家品行业该何去何从?如何把握好市场方向?
方向 1
打通线上线下渠道,便利与体验两手都要抓
在互联网时代,新兴行业的发展选择线上还是线下渠道,这是一个最为常见的话题。家品虽然隶属于家居行业,但与传统的家具属性不同,产品体量小、更新换代快的特点,更能够适应互联网的水土。以优集品网为例,该平台发展三四年来销量一直很稳定,年增速达到300%—500%。不过,线下做得好的平台也不遑多让。HI百货创始人谢萌透露,HI百货正佳店开业至今,销售额始终保持倍数的增长,目前已经在北京、武汉开拓新店,还有更多国内城市主动邀请HI百货进驻。刚成立一周年的旋木家居,也以其高端小众的定位,牢牢抓住高端消费人群,不仅销售稳步上升,也吸引了许多异业的合作伙伴。
对于线上线下渠道之辩,多数企业认为应该两手并抓。谢萌表示,HI百货微店已经进入调试阶段。线上不仅可以节约交易成本,更重要的是可以便利消费者,为消费者提供具备服务增值的情感模式。同时,互联网更方便数据收集,对消费习惯、消费偏好进行研究,助品牌提供更全面的服务。就连经营国际顶级家品品牌的旋木家居也有触网的打算,创始人倪娜表示,中国市场庞大,网购具有一定的优势。并且国内消费者已经形成网购的消费习惯,走电商渠道也是为了迎合消费者的需求,提供更多的增至服务。
优集品网创始人鲁宁馨表示,互联网家品肯定是大势所趋,不过,家品在一定程度上仍然需要体验。对于好的产品来说,直观的体验就能最直接地抓住消费者的心,因此,线上渠道也有存在的必要性。谢萌认为,线下店不仅仅是卖商品,更重要在于能够向消费者展示一种价值观和文化取向,分享共同的生活方式,这也是HI百货能够成为广州文化生活地标的一个原因。
方向 2
有必要做好市场教育,让更多消费者认识家品
虽然有越来越多的人群开始消费家品,尤其在都市白领、年轻家庭、海归人士等人群中呈现出较高的增长性。不过,国内消费者对于家品的认识远远不够。朋友圈的流行,可能让消费者开始意识到吃饭也要吃得美美的,因此会选购趣味而有设计感的餐具,然而,对于餐具背后更多的设计故事、文化内涵不甚了解。
家品不仅能够为生活增添乐趣、带来方便,一些顶级产品更值得收藏传世。再者,家品不仅仅是生活用品,更能传达出一种生活方式和价值追求。只有在观念上达到了共鸣,消费者才能更好地认识、认可家品,从而促进行业的蓬勃发展。因此,做好市场教育、市场培养是许多企业致力投入的方向。
互联网平台从商品介绍、品牌宣传的角度,挖掘更多的新品“威水史”,让消费者对品牌有了初步认知并产生认可。而线下品牌则可以做得更加深入。例如HI百货自成立以来,经常会举办一些线下展览和活动,营造卖场整体的文化氛围。同时,还会为会员提供生活课堂,包括手绘陶瓷、花艺课堂、皮具制作、烘焙制作等,让更多消费者接触到新的生活方式。旋木家居也经常为VIP会员提供增值服务,例如红酒、咖啡、生活美容等方面的讲座,通过价值观上的一致认同,为消费者提供更多元的生活方式。
方向 3
基于大数据分析,抓准市场痛点
互联网大数据时代,为各行业的方向提供更加科学而明确的数据支持,减少企业独自探索需要绕的弯路,大大地加快了行业的发展速度。家品行业也不例外,在大数据时代,需要对消费人群进行深入分析。谢萌认为,家品行业更需要数据分析,家品的消费涉及到生活习惯、生活观念,人体工学、审美情趣、使用偏好上的差异,就能够产生巨大的差别。因此,进口家品能不能根据中国实际生活场景进行改良和消化,将决定其未来的市场前景。
鲁宁馨表示,无论是平台定位,还是运营操作,大数据分析对于家品行业发展至关重要。优集品网之所以能够呈现高速增长,牢牢抓住消费者,很大程度得益于对消费市场的分析。不仅依靠平台自身的消费信息,还通过零售、网络、专业市场分析提供的数据,对市场进行研究。她表示:“一开始优集品网的饰品比重偏高,然而这一门类的可代替性强、必要性不高,难以产生较高的粘性。经过数据分析之后,对优集品进行改版,重点打造需求稳定的餐厨品类,增加个人护理、母婴尚品、旅游相关等,这些都是目标人群关注、需求的品类。改版后能够抓住消费者痛点的产品多了,也大大刺激销售增量。”
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21