菜鸟也有当家时。作为出炉不久的“数据分析师”,今天被一个朋友问了三个问题,当时比较简单的回答了下,过后想起来,其实这三个问题正是可以用来反思和总结自己的好机会,于是有了这篇日志。
这三个问题是: 1、数据分析的工作当中主要做哪些实质性的工作 2、分析人员比较重要的个人素质 3、用excel进行分析的常用功能有哪些
一、数据分析中有哪些实质性的工作
其实,数据分析从头到尾都是实质性工作。 希望成为数据分析师的人,其实可以轻易的从书籍中或者网络上找到很多方向性的东西,例如数据分析的原则、数据报告的内容构架方法、数据分析产品的形式等等。但实际上,扎进一个行业,深入了解它内部的数据逻辑、管理原则、传播形式,并为此需要准备的数据分析工具和常用方法,才是最重要也是最花时间的,甚至,如果不做这些,“数据分析”这个概念就是一个空谈。 “实质性”的工作可以分为三个主要的板块: 第一,对行业的数据逻辑及数据获取方式的了解。数据从哪儿来的、怎么来的、都包括哪些维度、用什么方式进行采集和统计的、如何标记、如何去重、有什么可能出现误差的地方、误差如何解决……这些全部需要一清二楚。未必要分析师去洞悉程序的逻辑,但必须清楚数据信息的来龙去脉,以及与企业产品的关系,数据的可扩展性,等等。
了解了这些,才能够在进行分析的时候更有效的运用数据。 这其中,对误差的认知和期望极为重要。这不但能够帮助分析师在数据使用时减少错误,更重要的是,当一些数据无法直接得到,或一些观点的逻辑无法直接通过现有数据得出的时候(可能这是相当普遍的状况),分析师能够知道如何设计数据获取方法和分析方法来有效的得到结论而不出错。
第二,对工具的熟悉。
不同的数据量级和数据结构,使用的软件工具不尽相同。相同的工具,因为分析内容不同,常用的功能也不尽相同。要依据自己工作的需求来使用和学习。——听起来是废话是吧。对的,就是这样,因为这是很个性化的事。最好的做法就是确定软件工具后找本书,啃,努力啃,花时间啃。然后向前请教设计师,向后请教数据挖掘专家,上游下游的工具都接触一些,不会错。 第三,对出口的理解。数据分析是为了什么,这直接决定数据分析的策略和逻辑。用于产品传播、用于向上级汇报、用于总结工作、用于研究竞品、用于PR造势、用于媒体报道……虽然是同样的基础数据,但关注点和分析方法截然不同。分析师要在工作中慢慢理解每一个出口对数据的需求,这将指引咱们做出最有用的分析。
这里再插进《深入浅出数据分析》里的一句话:“作为数据分析师,如果只做了数据传递的工作——没出息。”要有观点。再说一遍,要,有,观,点。 上述三点都是要动脑子花时间磨的,和切实的工作内容非常相关,因此,它们一旦落于纸面(长微博?)也成了空谈了……所以,憧憬昏析师的亲们,这种问题听两句就够啦,谁说的也别太信。去做才是王道! 二、重要的个人素质 也是三点:好奇心、想象力、耐性。 好奇心就是要问为什么呗。数据突然高了为什么,出现无法识别的数据为什么,为什么会出错……不把任何数据的变化(或者不变)当“正常”。——嗯,做个敏感又神经兮兮的昏析师吧,这个世界需要你,少年。 想象力——我觉得这个是最难的,因为这个想象力不是天马行空的那种,而是了解了行业运营和管理规则之后(不了解?看行业报告吧,看竞争对手吧,看先进经验吧,看招股说明书看上市公司季报吧,度娘去吧,知乎去吧……),还能跳出框架来进行观察的能力。统计学中那些概念,手边备本书谁都能说出一二,但怎么用概率去描绘用户行为,怎么用同比环比来测算行业变化,怎么用标准化的方法来衡量产品的竞争力……分析师必须想出新奇的玩法来。真的好难。但一旦突破一点就是大进步,得坚持啊…… 耐性。不用说了吧,耐性就是,就算要吐了,还是要回去最后确认一眼是否没问题了。强迫症的同学可能比较有优势吧~哈哈。不强迫症的,就咬碎银牙(什么 ……
三、Excel的常用功能 排序、筛选和简单的计算都不用说了。
此外个人来讲数据透视表最最常用,其次是一些查询和匹配的函数。Excel是超级强大的工具,要相信,每个数据处理的需求,Excel基本都有比你会的那种更快捷的处理方案,如果不是一样快捷的话。这个会是长期功课…… 所以这就是简单的总结啦。要做靠谱的昏析师嗯!
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21