大数据时代处理数据的三大转变
大数据概念的横空出世,有赖于短短几年出现的海量数据。据统计,互联网上的数据每两年翻一番,而目前世界上90%以上的数据都是最近几年才产生的。当然,海量数据仅仅是“大数据”概念的一部分,只有具备4个“V”的特征,大数据的定义才算完整,而价值恰恰是决定大数据未来走向的关键。
大数据发展必备三个条件
大数据的发展需要三个必要条件:数据源、数据交易、数据产生价值的过程。近年来,社交网络的兴起、物联网的发展和移动互联网的普及,诞生了大量有价值的数据源,奠定了大数据发展的基础。大数据时代到来的重要标志,则是大批专业级“数据买卖商”的出现,以及围绕数据交易形成的,贯穿于收集、整理、分析、应用整个流程的产业链条。大数据发展的核心,则是使用户从海量的非结构化数据和半结构化数据中获得了新的价值,数据价值是带动数据交易的原动力。
IBM、甲骨文、SAP近年纷纷斥巨资收购数据管理和分析公司,在这些互联网巨头的带动下,数据分析技术日渐成熟。2013年6月,爱德华·斯诺登将“棱镜计划”公之于众,“棱镜门”事件一方面说明大数据技术已经成熟;另一方面也佐证了现在阻碍大数据发展的不是技术,而是数据交易和数据价值。
大数据技术的发展促进了云计算的落地,云计算的部署完成又反过来加大了市场对数据创造价值的期待。大数据概念提出之后,市场终于看到了云计算的获利方向:各地的一级系统集成商与当地政府合作,建云数据中心;各大行业巨头在搭建各自行业的云平台;IT巨头想尽办法申请中国的公有云牌照。大数据促成了云计算从概念到落地。借助于智慧城市概念的普及,云计算基础设施已基本准备就绪,一方面完成了大数据应用的硬件基础;另一方面迫于回收云计算投资的压力,市场急需应用部署,大数据恰如雪中送炭,被市场寄予厚望。
现在,问题的核心指向了“数据如何创造价值?”
整合与开放是基石
大数据服务创业公司Connotate对800多名商业和IT主管进行了调查。结果显示,60%受调查者称:“目前就说这些大数据投资项目肯定能够带来良好回报尚为时过早。”之所以如此,是由于当前大数据缺乏必需的开放性:数据掌握在不同的部门和企业手中,而这些部门和企业并不愿意分享数据。大数据是通过研究数据的相关性来发现客观规律,这依赖于数据的真实性和广泛性,数据如何做到共享和开放,这是当前大数据发展的软肋和需要解决的大问题。
2012年美国大选,奥巴马因数据整合而受益。在奥巴马的竞选团队中有一个神秘的数据挖掘团队,他们通过对海量数据进行挖掘帮助奥巴马筹集到10亿美元资金;他们通过数据挖掘使竞选广告投放效率提升了14%;他们通过制作“摇摆州”选民的详细模型,每晚实施6.6万次模拟选举,推算奥巴马在“摇摆州”的胜率,并以此来指导资源分配。奥巴马竞选团队相比罗姆尼竞选团队最有优势的地方:对大数据的整合。奥巴马的数据挖掘团队也意识到这个全世界共同的问题:数据分散在过多的数据库中。因此,在前18个月,奥巴马竞选团队就创建了一个单一的庞大数据系统,可以将来自民意调查者、捐资者、现场工作人员、消费者数据库、社交媒体,以及“摇摆州”主要的民主党投票人的信息整合在一起,不仅能告诉竞选团队如何发现选民并获得他们的注意,还帮助数据处理团队预测哪些类型的人有可能被某种特定的事情所说服。正如竞选总指挥吉姆·梅西纳所说,在整个竞选活中,没有数据做支撑的假设很少存在。
2012年3月,美国奥巴马政府宣布投资2亿美元启动“大数据研究和发展计划”,将“大数据研究”上升为国家意志。一个国家拥有数据的规模和运用数据的能力将成为综合国力的重要组成部分。国内智慧城市建设目标之一就是实现数据的集中共享。
合作共赢的商业模式
随着云计算、大数据技术和相关商业环境的不断成熟,越来越多的“软件开发者”正在利用跨行业的大数据平台,打造创新价值的大数据应用,而且这一门槛正在不断降低。因为首先,数据拥有者能够以微乎其微的成本获取额外的收入,提高利润水平;其次,大数据设备厂商需要应用来吸引消费者购买设备,发展合作共赢的伙伴关系势必比单纯销售设备要有利可图,一些具有远见的厂商已经开始通过提供资金、技术支持、入股等方式来扶持这些“软件开发者”;第三,行业细分市场的数据分析应用需求在不断加大,对于整个大数据产业链来说,创新型的行业数据应用开发者必将是未来整个大数据产业链中最为活跃的部分。
未来,有三种企业将在”大数据产业链“中处于重要地位:掌握海量有效数据的企业,有着强大数据分析能力的企业,以及创新的“软件开发者”。社交网络、移动互联网、信息化企业、电信运营商都是海量数据的制造者,Facebook公司手中掌握着8.5亿用户,淘宝注册用户超过3.7亿,腾讯的微信用户突破3亿,这些庞大用户群所提供的数据,正在等待时机释放出巨大商业能量。可以预测,在不久的将来,Facebook、腾讯、电信运营商等海量数据持有者或者自我延伸成为数据分析提供商,或者与IBM、ZTE等企业密切对接成为上下游合作企业,大数据产业链将在某个爆发时点到来之际,以令人惊讶的速度成长壮大。
警惕大数据的危害
大数据时代,传统的随机抽样被“所有数据的汇拢”所取代,人们的思维决断模式,已可直接根据“是什么”来下结论,由于这样的结论剔除了个人情绪、心理动机、抽样精确性等因素的干扰,因此将更精确、更有预见性。不过,由于大数据过于依靠数据的汇集,一旦数据本身有问题,就很可能出现“灾难性大数据”,即因为数据本身的问题,而导致错误的预测和决策。
大数据的理论是“在稻草堆里找一根针”,而如果“所有稻草看上去都挺像那根针”呢?过多但无法辨析真伪和价值的信息和过少的信息一样,对于需要作出瞬间判断、一旦判断出错就很可能造成严重后果的情况而言,同样是一种危害。“大数据”理论是建立在“海量数据都是事实”的基础上,而如果数据提供者造假呢?这在大数据时代变得更有害,因为人们无法控制数据提供者和搜集者本人的偏见。拥有最完善数据库、最先接受“大数据”理念的华尔街投行和欧美大评级机构,却每每在重大问题上判断出错,这本身就揭示了“大数据”的局限性。
不仅如此,大数据时代造就了一个数据库无所不在的世界,数据监管部门面临前所未有的压力和责任:如何避免数据泄露对国家利益、公众利益、个人隐私造成伤害?如何避免信息不对等,对困难群体的利益构成伤害?在有效控制风险之前,也许还是让“大数据”继续待在笼子里更好一些。
大数据的经济价值已经被人们认可,大数据的技术也已经逐渐成熟,一旦完成数据的整合和监管,大数据爆发的时代即将到来。我们现在要做的,就是选好自己的方向,为迎接大数据的到来,提前做好准备。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31