数据分析面试题:如何从10亿查询词找出出现频率最高的10个?
1. 问题描述
在大规模数据处理中,常遇到的一类问题是,在海量数据中找出出现频率最高的前K个数,或者从海量数据中找出最大的前K个数,这类问题通常称为“top K”问题,如:在搜索引擎中,统计搜索最热门的10个查询词;在歌曲库中统计下载率最高的前10首歌等等。
2. 当前解决方案
针对top k类问题,通常比较好的方案是【分治+trie树/hash+小顶堆】,即先将数据集按照hash方法分解成多个小数据集,然后使用trie树或者hash统计每个小数据集中的query词频,之后用小顶堆求出每个数据集中出频率最高的前K个数,最后在所有top K中求出最终的top K。
实际上,最优的解决方案应该是最符合实际设计需求的方案,在实际应用中,可能有足够大的内存,那么直接将数据扔到内存中一次性处理即可,也可能机器有多个核,这样可以采用多线程处理整个数据集。
本文针对不同的应用场景,介绍了适合相应应用场景的解决方案。
3. 解决方案
3.1 单机+单核+足够大内存
设每个查询词平均占8Byte,则10亿个查询词所需的内存大约是10^9*8=8G内存。如果你有这么大的内存,直接在内存中对查询词进行排序,顺序遍历找出10个出现频率最大的10个即可。这种方法简单快速,更加实用。当然,也可以先用HashMap求出每个词出现的频率,然后求出出现频率最大的10个词。
3.2 单机+多核+足够大内存
这时可以直接在内存中实用hash方法将数据划分成n个partition,每个partition交给一个线程处理,线程的处理逻辑是同3.1节类似,最后一个线程将结果归并。
该方法存在一个瓶颈会明显影响效率,即数据倾斜,每个线程的处理速度可能不同,快的线程需要等待慢的线程,最终的处理速度取决于慢的线程。解决方法是,将数据划分成c*n个partition(c>1),每个线程处理完当前partition后主动取下一个partition继续处理,直到所有数据处理完毕,最后由一个线程进行归并。
3.3 单机+单核+受限内存
这种情况下,需要将原数据文件切割成一个一个小文件,如,采用hash(x)%M,将原文件中的数据切割成M小文件,如果小文件仍大于内存大小,继续采用hash的方法对数据文件进行切割,直到每个小文件小于内存大小,这样,每个文件可放到内存中处理。采用3.1节的方法依次处理每个小文件。
3.4 多机+受限内存
这种情况下,为了合理利用多台机器的资源,可将数据分发到多台机器上,每台机器采用3.3节中的策略解决本地的数据。可采用hash+socket方法进行数据分发。
从实际应用的角度考虑,3.1~3.4节的方案并不可行,因为在大规模数据处理环境下,作业效率并不是首要考虑的问题,算法的扩展性和容错性才是首要考虑的。算法应该具有良好的扩展性,以便数据量进一步加大(随着业务的发展,数据量加大是必然的)时,在不修改算法框架的前提下,可达到近似的线性比;算法应该具有容错性,即当前某个文件处理失败后,能自动将其交给另外一个线程继续处理,而不是从头开始处理。
Top k问题很适合采用MapReduce框架解决,用户只需编写一个map函数和两个reduce 函数,然后提交到Hadoop(采用mapchain和reducechain)上即可解决该问题。对于map函数,采用hash算法,将hash值相同的数据交给同一个reduce task;对于第一个reduce函数,采用HashMap统计出每个词出现的频率,对于第二个reduce 函数,统计所有reduce task输出数据中的top k即可。
4. 总结
Top K问题是一个非常常见的问题,公司一般不会自己写个程序进行计算,而是提交到自己核心的数据处理平台上计算,该平台的计算效率可能不如直接写程序高,但它具有良好的扩展性和容错性,而这才是企业最看重的。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21