热线电话:13121318867

登录
首页精彩阅读制造业大数据的“冷”思考?
制造业大数据的“冷”思考?
2016-01-01
收藏

制造业大数据的“冷”思考?

当前,大数据作为新一代信息技术的关键,逐渐成为新一轮产业革命的核心。制造业迈入了大数据时代,2012年,GE公司率先明确了“工业大数据”的概念。在制造业,产品的全生命周期从市场规划、设计、制造、销售、维护等过程都会产生大量的结构化和非结构化数据,形成了制造业大数据,而这些数据符合大数据的三“V”的特征:规模性、多样性以及高速性。除此以外,制造业大数据还具多源异构、多尺度、不确定、高噪声等特征。因此,研究和应用制造大数据更具有挑战性。 主要体现在制造大数据的存储、管理、分析和展示方面。如何充分挖掘工厂中数据的价值,通过对制造大数据进行分析,提升数字化工厂运行效率,已成为制约数字化工厂向智慧工厂发展的瓶颈!

张洁教授:制造业大数据的“冷”思考?

然而,大数据给我们带来的思考:在制造业能用吗?解决什么问题?制造业大数据到底在哪些领域可以发挥它的作用?

首先,能用否?大数据已经成为解决现实世界问题的方法。要解决现实世界的问题,第一种方法就是科学实验,通过实验的方法来发现现实世界的一些规律和解决和问题; 第二种就是通过理论分析和推导方法;第三种就是科学计算,模拟仿真成为第三种解决问题的范式;数据科学成为第四种解决问题的范式,这个就是由美国图灵奖的获得者,他出了一本书《第四种范式》,目前现在国外数据科学是一门非常热门的学科,它是一门综合交叉的学科。

大数据方法带来了思维上的变化,主要是从三个方面来看的:

从因果到关联,更强调事物之间的相关性而非因果性。

从局部到全体,采用全体数据进行分析,而不是随机样本。

从精确到混杂,通过数据保证解的优异性,不再一味追求精确的算法。

既然大数据已经成为解决问题的方法,那能用它。

因此,从数字化工厂向智能化工厂转化的过程中面对着海量的数据,需要寻找它们相互之间的联系和隐藏规律,实现透明化的目标。

最后,在哪里用?大数据它给制造业提供的是一种全方位的全程式的一种服务,在产品全生命周期阶段,从设计到制造、从使用到维护、直到维修阶段,产生的正向数据以及逆向数据,这些数据都能全方位的使用。

在产品的设计中,传统的设计师,基于经验灵感和经验,揣度消费者的需求喜好,设计产品。在大数据时代,设计师通过对用户行为和需求大数据进行分析,精准量化客户需求,指导设计过程。

在制造阶段,大数据技术可以帮助实现生产过程异常发现、产品质量和生产调度优化等方面。以生产异常发现为例,传统的基于降维手段的异常发现方法,容易破坏信息完整性,不利于设备异常的发现。在大数据模式下,基于制造数据的分析对关键参数进行提取,然后通过聚类分析手段发现设备异常模式,在此基础上对设备控制优化。大数据也能帮助提高产品的质量控制,大家来自制造业可能知道SPC控制的是整个过程的单个参数,但是单个参数在正常范围,为什么还会出现一些质量问题?可能每个参数均处于临界状态,综合产生会产生一些质量问题,所以在这个过程中,传统就是数据的筛选、参数分析,这个过程介入了人工的分析来进行质量的预测,数据筛选过程淘汰了许多有效的数据资源,参数分析过程经常存在人工经验判断,使得预测模型对整个产品加工过程信息的描述残缺不全,不能发现产品质量问题的深层次原因(如误差累积)。 因此在大数据模式下,根据产品的加工工艺过程,对产品质量相关数据按层次进行组织,利用多隐藏层的神经网络深度学习加工过程中产品质量数据的相互作用机理,从而对产品质量问题进行全面、深层次描述。大数据能提升大规模生产调度的全局性能,大家知道为什么我们企业生产调度一直会出现问题,我们做的计划好好地赶不上变化。因为所做的计划,是在一个理想状态下考虑约束做的计划。我自己做生产优化调度做了20多年,一直在寻找一种最优的解决方案,研究智能方法,例如:遗传算法、蚂蚁算法等。但随着工艺的复杂、环境的复杂、工艺的规模,整个问题规模越来越大的时候,它已经是一个很难解决的问题。传统的智能调度方法难以求解大规模的调度问题,基于规则和瓶颈的方法在大规模问题中又很难得到全局优化解;大数据带来了新思路,他采用全局的数据之间的关联关系,从而形成全局的调度方案,能够解决大规模生产中的全局调度问题。

大数据能为产品的运营维护服务,很典型的案例就是GE的案例,建立一个平台,为航空发动机的监控、运行监测、故障诊断提供一个全方位的服务。在产品的运行和维护过程中,大数据模式一改传统方法被动的运维模式,通过采集和分析智能设备的传感器数据,进行大数据分析,主动进行产品的安全监测、故障诊断,优化产品的运行过程。大数据应用过程中需要的是什么呢,首先需要的是能够采集到数据,也就是需要产品是一个智能化的产品,所以 在智能制造中,首先要有智能化的产品,安装传感器,能够实时的传递数据,这为后面的运行、维护服务提供了依据。

大数据不只是关于数据,而是采用传统及新的分析方法来分析所有数据。针对大数据分析的结果采取行动来提升业务才是最重要。随着大数据技术的不断地发展,国内外已对大数据在制造领域中的应用进行了一些开拓性的研究,代表性的有GE工业互联网解决方案、Smart Factory计划,SAP HANA平台和Invensys数据分析平台,并已在农夫山泉、百事饮料等公司应用。三一重工利用大数据技术通过对地理位置数据的关联分析发现泵车主油缸故障与沿海地区杭深高铁建设的强相关性,确定了沿海地区的盐雾环境和水质是导致油缸密封体腐蚀的主要原因。日本小松公司通过对挖掘机安装传感器与GPS定位系统,从而实时监控车辆运行情况,并通过大数据分析,对未来挖掘机市场的需求进行预测从而调整生产、对用户的使用习惯进行分析与建议从而降低油耗。

以上的一些工业案例成为制造业大数据的先驱,然后,目前绝大多数制造业大数据的应用没能形成系统化的思路和方案,缺乏理论体系的支撑。 针对国内在制造业大数据应用基础研究上的空白,我团队2014年申请了国家自然科学基金重点项目“大数据驱动的智能车间运行分析与决策方法研究”,并得到了资助。目前,围绕车间制造大数据之间的耦合作用机理、车间性能的演化规律、车间运行过程的调控机制三个基础科学问题进行科学研究,来探索我们的大数据在我们的智能制造车间的运行情况。解决问题的思路是是一切都在用数据来说话,利用大数据来解决工程问题的科学研究思路是: 一切数据说话。首先数据化:将设备状态参数、计划执行情况等运行参数,以及质量、交货期等性能指标数据化;然后分析这些数据之间的关联关系,用数据挖掘的方法预测交货准时率、产品合格率等车间性能的演化规律;从演化规律中,发现质量指标中某数据异常,找到影响该异常数据的关键参数,最后对关键数据进行控制,保证交货期和产品质量。为了实现大数据应用,我们提出了大数据驱动的智慧工厂,它是生产车间、物联网、云端、移动互联的有机融合。利用物联网技术,使得车间生产过程、物流及之后的销售、服务过程具备感知能力;全生命周期内产生的各种制造数据保存到云端;借助大数据处理与分析技术,依托云计算平台,帮助分析数字工厂运行过程,提供决策支持,并通过移动互联方式展现。目前我们在晶圆制造的车间和发动机装配车间,开展了一系列的工作。

最后,我认为:实现以数据感知、数据处理分析、制造过程决策与支持、数据可视化技术为核心的智慧工厂已经成为趋势,大数据产业链及技术体系逐渐成熟,大数据必将加速数字工厂向智慧工厂的转型。

数据分析咨询请扫描二维码

若不方便扫码,搜微信号:CDAshujufenxi

最新资讯
更多
客服在线
立即咨询