大数据行业2016的变与不变
据《中国科学报》报道,“这两年大数据的风头明显盖过了云计算,这不是好事。”近日,华为IT产品线大数据解决方案规划总监徐兴海在2015中国大数据技术大会上如是说。他认为,云计算已过了炒作期,在公有云的带动下实现了规模化落地,“已经开始赚钱了”;而在去年,大数据的发展还在泡沫的破灭中,今年大数据已开始有走入应用的“苗头”,“而不仅仅是炒作”。
除了从“炒作”到走向“泡沫的幻灭”,备受瞩目的大数据在2015年还经历了哪些变化?又将如何迈入2016年?几个月后,由中国计算机协会(CCF)大数据专家委员会编撰的第三版关于大数据的白皮书将发布,CCF大数据专家委员会副秘书长潘柱延却“提前泄密”,他分析了大数据行业的几个关键词:民生、多样性和融合性、政策拉动、大数据生态。
十大趋势不容忽视
据潘柱延介绍,去年的中国计算机学会(CCF)大数据专家委列出了2016年大数据产业技术发展的十大趋势,而这些趋势可以解释上面提到的关键词。
“可视化技术推动大数据平民化被专家选为了第一大趋势,这是非常有意思的结论,工作组也感到很意外。”潘柱延解释,可视化作为技术形态能排到第一,其实背后隐藏着大数据的平民化,普通老百姓和常规的决策者能够更好地理解大数据的效果和价值。
大数据将引导多学科融合。不仅是计算机领域的科学家,数学等其他领域的科学家也将参与到大数据的前沿研究中。
大数据的安全和隐私也受到了持续关注。对大数据的威胁和对大数据所产生的副作用,以及大数据发展中的障碍会逐渐成为大数据领域的关注点。潘柱延指出,虽然现在并没有针对大数据攻击的大规模报道,但是安全和隐私方面的隐忧已令大家担忧,这也是阻碍大数据发展的问题之一。
还有许多新热点将持续融入大数据的模式中,形成更加平衡的路径。而且,大数据将在民生领域重点应用,提升社会治理的效果。“和民生相关的,如智慧城市、应急、反恐等都会是发展重点,专家组认为这样的领域可能实现爆发性的发展。”潘柱延说。
去年9月5日,国务院印发了《促进大数据
发展行动纲要》,并指出:将在未来5至10年打造精准治理、多方协作的社会治理新模式,建立运行平稳、安全高效的经济运行新机制,构建以人为本、惠及全民的民生服务新体系。
CCF大数据专家组认为,该纲要将对大数据的发展起到推动性的作用,成为大数据产业快速发展的催化剂和政策标杆,也将推动地方政府出台类似的配套政策。潘柱延指出:“除了学术、技术、商业的推动外,政策的扶持会产生很大作用,大数据相关的基础设施建设和大数据创业公司在双创政策的推动下,两个驱动力会快速带动大数据的发展。”
在学术技术研究上,深度分析会继续成为推动大数据智能应用的代表之一。美剧《疑犯追踪》中曾展示了大数据的最终极应用——人工智能体几乎主宰人类生死的场景。在该大数据会议上,IBM的专家也展示了2011年曾挑战人类智力竞赛并获得冠军的超级电脑系统Watson。潘柱延认为,在人工智能领域,涉及与人的相关能力延伸,比如,决策、预测、精准推介等都将继续是大数据技术和学术研究的重要应用关注点。
数据权属与数据主权将得到进一步关注,
所有权属和主权的利益冲突和争夺都是来自数据资源化、数据价值化。不仅如此,大数据的应用领域还将从“老三样”迈进到“新三样”,即从互联网、金融、健康这三个增长点转换成城市、企业和工业数据这三大新增长点。
谈到人才和技术的生态方向,CCF大数据专家组预测,开源将持续成为大数据发展的主导性的技术方向和技术平台,测评则会以良币驱逐劣币的方式引导优秀的大数据技术发展,而各种各样的创业创新大赛也会成为人才和技术生态完善的一个重要标准和驱动力。
大数据之变
根据2013年发布的大数据白皮书显示,十大关注点在于:数据的资源化,大数据的隐私问题突出,大数据与云计算等深度融合,基于大数据智能的出现,大数据分析的革命性方法,大数据安全,数据科学兴起,数据共享联盟,大数据新职业和更大的数据。
而2014年的十大关注点是:大数据从概念走向现实,大数据架构的多样化模式并存,大数据的安全和隐私,大数据的分析与可视化,大数据产业成为战略性产业,数据商品化
与数据共享联盟化,基于大数据的推荐与预测流行,深度学习与大数据智能成为支撑,数据科学的兴起与大数据生态环境逐步完善。
基于此,潘柱延分析,从2013年到2014年,大数据从概念走向了价值。而从2014年到2015年,大数据出现了几个明显的变化点,如跨接融合、基础互换和基础突破等亟待解决的问题,从2015年到2016年,大数据最重要的变化则是民生、多样、政策和生态。
4年来,大数据受到关注的应用领域包括互联网、电子商务、金融和健康医疗等,最新的关注领域则是城市化、智慧城市、舆情分析、社会安全等。
据CCF大数据专家组预测,2016年与城市、互联网交易和企业相关的三部分数据可能会取得突破性进展,未来一年的资本投入将对该趋势有所印证。
潘柱延透露,今年的大数据白皮书中重点讨论的是大数据开放共享。
在调研中,CCF大数据专家组邀请了100多位专家讲述2016年的大数据计划以及对数据流转的态度。调研结果显示,业内专家都希望能自己收集数据,并利用收集的数据进行数据服务,希望能买到“数据机”,而专家和其所在的机构计划卖“数据机”的却非常少。
潘柱延指出,数据流转整体处在需求大于供给的状态,尤其是数据国际交换和卖数据。“希望通过政府开放共享,拉动数据交流和交换。政策性是大数据发展的重要指标,不可否认,大数据本身具有概念性,有泡沫存在,但是不能因为啤酒上有泡沫而放弃底下香浓的啤酒。”他强调。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20