大数据的新目标:挖掘人的梦境 揭开潜意识的真面目
人类进入快速眼动睡眠(REM)的熟睡状态时,会将清醒时的现实情形与想象结合,营造出比真实世界更奇幻的梦境。梦可能无拘无束,可能治愈创伤,也可能是可怕怪异的噩梦。
众所周知,梦能孵化伟大的思想,曾孕育出爱因斯坦的相对论,也激发了滚石乐队创作伟大歌曲的灵感。不过,做梦的人几乎不可能将梦的内容传达给他人,所以大多数的梦境都只能自己独享,难逃被遗忘的结局。
20世纪初,弗洛伊德首次提出“梦”的说法,现代人则不妨将它当成一种“数据”来理解。大多数时候,人每晚会做很多梦,然而这海量信息大多数都会被遗忘。第二天醒来以后,我们常常只记得那么多梦里的一两个。即便是那些残存的零星梦境,也可能在我们抓起笔记下之前就从脑海里溜之大吉了。
因此,梦是很难研究的对象。和其他科研领域不同的事,没有多少关于“梦”的数据能够真正拿来研究,更别说推动理论进步,因此这个领域长期处于混沌未开的状态。
然而今时不同往日,如果能用时下流行的大数据来捕捉人的梦境,用一种量化的方式带领我们通往弗洛伊德所说的“通往潜意识的最佳途径”,那会不会有所突破?如果我们能够收集分析出梦的模式和相似之处,比如找出最常出现的是什么颜色,然后进行数据挖掘,这能否真正揭开人类潜意识的真相、找到做梦的缘由?
这些正是西班牙神经科学家翁贝托·莱昂·多明戈斯等学者提出的大胆假设。
多明戈斯在马德里自治大学医学院精神病学系工作,是睡眠与昼夜节律实验室的研究员。他认为:“既然社交网站的鼻祖Facebook和打车软件Uber能够管理人们有意识的信息,我们也该更进一步,管理自己的潜意识。”
除了在实验室做研究,多明戈斯还是一款叫Shadow的手机应用的研发顾问,该应用目前还处于开发阶段。那是一款众包的闹钟应用和梦境日志,希望利用特定的算法,在全球的“做梦者”中找出梦境的模式。在人类漫长的梦境收集史上,Shadow算是最新的尝试。
美国心理学家玛丽·惠顿·卡尔金斯(Mary Whiton Calkins)是收集并系统组织大量梦境数据的其中一位先驱。她还是首位当选美国心理学会主席的女性,堪称真正的“梦境会计师”。1893年,她收集了几百个梦境,对这些信息进行统计分析。她发现,“梦中的生活和现实世界有着密切的联系。”这一结论让过去认为梦境毫无意义的人仿佛受了当头一棒。
上世纪50年代,又出现了一个颠覆传统观念的科学创举——第一个真正的梦境数据库建起来了。当时,以哈佛大学心理学家伯特·卡普兰(Bert Kaplan)为首的一批社会学家尝试建立一个“有史以来规模最大的社会学信息数据库”。
哈佛大学的科学史教授瑞贝卡·勒莫夫(Rebecca Lemov)在她即将出版的著作中提到了这个项目:“到20世纪中叶,这项新的运动捕捉并定格了人类生活最难以捉摸之处。紧张之处就在于这里——从梦境这样转瞬即逝的信息中创建数据。”而且,这些考古学家和心理学家不只旨在创建数据,他们还想将它存储起来,供后世科学家研究。
这些研究者的确收集了很多梦境(其中大多数来自美洲土著部落人),但是,他们把这些信息存在一个现在早已过时的存储系统Microcard里,导致美好的愿景从未实现。加州伯克利神学联盟研究生院的访问学者凯利·巴尔克利(Kelly Bulkeley)也是一位梦境研究者。他评价,上世纪中叶那批科学家收集梦境的想法是对的,可惜他们的技术落后于时代,最终让研究活动走上歧途。
现在,巴尔克利成了新一代梦境数据收集与分析领域的领军人物,他的在线档案已经记录了上千个梦境,都可以进行搜索查询。他和认知心理学家威廉·多姆霍夫(William Domhoff)合作,给上世纪50年代的科研理念注入了信息时代的生机。
多姆霍夫也是用大数据手段研究梦境的先行者,他成立了一个梦境收集网站Dreambank.net。据美国商业杂志《快公司》报道,巴尔克利与多姆霍夫的关键字算法可以推导出做梦者“清醒状态下的准确信息,包括其生活习惯(职业、体育活动、爱好)、人际关系和性关系状态(在约会还是已婚,性生活是否活跃)、情绪状态(积极投入、焦虑不安、无聊乏味还是抑郁低落)。”
登陆巴尔克利的网站,通过上面的众多关键字来筛选,并观察数据样本,你会发现有上百个梦境和《哈利·波特》里的人物、吸血鬼和僵尸有关。该网站还提供诸如“进步人士的梦”和“极保守人士的梦”,甚至可以分国别查看乌克兰、巴西、阿根廷等国家国民的梦。数据表明,梦的体验可能源于做梦者内心根深蒂固的意识形态、道德或者宗教信仰。
巴尔克利也是Shadow的顾问,但他担心,仅仅推出一款应用还不足以鼓动用户分享并即时更新自己的梦。他说:“人们对某些梦的模式非常好奇,但要是没有一些实质性的奖励来支持,我觉得这还不足以吸引人去尝试。”
不过,就在今年早些时候,Shadow发布了内部测试版,目前已有几千人使用Shadow上传了自己的梦境。现在Shadow正在修复漏洞,并采取措施保障数据安全,计划在今年年底以前公开发布测试版。
Shadow也并非目前唯一收集到海量梦境数据的智能手机应用。一款名为DreamSphere的iPhone应用已经收集了将近200万个梦,范围遍及印度、墨西哥等多个国家,用户能够看到世界各地的人都梦到些什么。
即使梦境收集无法达到Facebook的水平,对研究人员来说,这些激增的信息也已成为巨大的考验。巴尔克利预计:“未来几年里,我们会看到一波新的(梦境)研究高潮,这将挑战大家对梦的传统观念。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28