大数据的新目标:挖掘人的梦境 揭开潜意识的真面目
人类进入快速眼动睡眠(REM)的熟睡状态时,会将清醒时的现实情形与想象结合,营造出比真实世界更奇幻的梦境。梦可能无拘无束,可能治愈创伤,也可能是可怕怪异的噩梦。
众所周知,梦能孵化伟大的思想,曾孕育出爱因斯坦的相对论,也激发了滚石乐队创作伟大歌曲的灵感。不过,做梦的人几乎不可能将梦的内容传达给他人,所以大多数的梦境都只能自己独享,难逃被遗忘的结局。
20世纪初,弗洛伊德首次提出“梦”的说法,现代人则不妨将它当成一种“数据”来理解。大多数时候,人每晚会做很多梦,然而这海量信息大多数都会被遗忘。第二天醒来以后,我们常常只记得那么多梦里的一两个。即便是那些残存的零星梦境,也可能在我们抓起笔记下之前就从脑海里溜之大吉了。
因此,梦是很难研究的对象。和其他科研领域不同的事,没有多少关于“梦”的数据能够真正拿来研究,更别说推动理论进步,因此这个领域长期处于混沌未开的状态。
然而今时不同往日,如果能用时下流行的大数据来捕捉人的梦境,用一种量化的方式带领我们通往弗洛伊德所说的“通往潜意识的最佳途径”,那会不会有所突破?如果我们能够收集分析出梦的模式和相似之处,比如找出最常出现的是什么颜色,然后进行数据挖掘,这能否真正揭开人类潜意识的真相、找到做梦的缘由?
这些正是西班牙神经科学家翁贝托·莱昂·多明戈斯等学者提出的大胆假设。
多明戈斯在马德里自治大学医学院精神病学系工作,是睡眠与昼夜节律实验室的研究员。他认为:“既然社交网站的鼻祖Facebook和打车软件Uber能够管理人们有意识的信息,我们也该更进一步,管理自己的潜意识。”
除了在实验室做研究,多明戈斯还是一款叫Shadow的手机应用的研发顾问,该应用目前还处于开发阶段。那是一款众包的闹钟应用和梦境日志,希望利用特定的算法,在全球的“做梦者”中找出梦境的模式。在人类漫长的梦境收集史上,Shadow算是最新的尝试。
美国心理学家玛丽·惠顿·卡尔金斯(Mary Whiton Calkins)是收集并系统组织大量梦境数据的其中一位先驱。她还是首位当选美国心理学会主席的女性,堪称真正的“梦境会计师”。1893年,她收集了几百个梦境,对这些信息进行统计分析。她发现,“梦中的生活和现实世界有着密切的联系。”这一结论让过去认为梦境毫无意义的人仿佛受了当头一棒。
上世纪50年代,又出现了一个颠覆传统观念的科学创举——第一个真正的梦境数据库建起来了。当时,以哈佛大学心理学家伯特·卡普兰(Bert Kaplan)为首的一批社会学家尝试建立一个“有史以来规模最大的社会学信息数据库”。
哈佛大学的科学史教授瑞贝卡·勒莫夫(Rebecca Lemov)在她即将出版的著作中提到了这个项目:“到20世纪中叶,这项新的运动捕捉并定格了人类生活最难以捉摸之处。紧张之处就在于这里——从梦境这样转瞬即逝的信息中创建数据。”而且,这些考古学家和心理学家不只旨在创建数据,他们还想将它存储起来,供后世科学家研究。
这些研究者的确收集了很多梦境(其中大多数来自美洲土著部落人),但是,他们把这些信息存在一个现在早已过时的存储系统Microcard里,导致美好的愿景从未实现。加州伯克利神学联盟研究生院的访问学者凯利·巴尔克利(Kelly Bulkeley)也是一位梦境研究者。他评价,上世纪中叶那批科学家收集梦境的想法是对的,可惜他们的技术落后于时代,最终让研究活动走上歧途。
现在,巴尔克利成了新一代梦境数据收集与分析领域的领军人物,他的在线档案已经记录了上千个梦境,都可以进行搜索查询。他和认知心理学家威廉·多姆霍夫(William Domhoff)合作,给上世纪50年代的科研理念注入了信息时代的生机。
多姆霍夫也是用大数据手段研究梦境的先行者,他成立了一个梦境收集网站Dreambank.net。据美国商业杂志《快公司》报道,巴尔克利与多姆霍夫的关键字算法可以推导出做梦者“清醒状态下的准确信息,包括其生活习惯(职业、体育活动、爱好)、人际关系和性关系状态(在约会还是已婚,性生活是否活跃)、情绪状态(积极投入、焦虑不安、无聊乏味还是抑郁低落)。”
登陆巴尔克利的网站,通过上面的众多关键字来筛选,并观察数据样本,你会发现有上百个梦境和《哈利·波特》里的人物、吸血鬼和僵尸有关。该网站还提供诸如“进步人士的梦”和“极保守人士的梦”,甚至可以分国别查看乌克兰、巴西、阿根廷等国家国民的梦。数据表明,梦的体验可能源于做梦者内心根深蒂固的意识形态、道德或者宗教信仰。
巴尔克利也是Shadow的顾问,但他担心,仅仅推出一款应用还不足以鼓动用户分享并即时更新自己的梦。他说:“人们对某些梦的模式非常好奇,但要是没有一些实质性的奖励来支持,我觉得这还不足以吸引人去尝试。”
不过,就在今年早些时候,Shadow发布了内部测试版,目前已有几千人使用Shadow上传了自己的梦境。现在Shadow正在修复漏洞,并采取措施保障数据安全,计划在今年年底以前公开发布测试版。
Shadow也并非目前唯一收集到海量梦境数据的智能手机应用。一款名为DreamSphere的iPhone应用已经收集了将近200万个梦,范围遍及印度、墨西哥等多个国家,用户能够看到世界各地的人都梦到些什么。
即使梦境收集无法达到Facebook的水平,对研究人员来说,这些激增的信息也已成为巨大的考验。巴尔克利预计:“未来几年里,我们会看到一波新的(梦境)研究高潮,这将挑战大家对梦的传统观念。
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26