一站式大数据分析平台,“洗剪吹”的执着
2015年,平台化的发展趋势日益明显,在大数据领域尤为突出。于是闻风而动的数据分析厂商也开始致力于构建一个快速、便捷的一站式大数据分析(数据分析师认证)平台,把数据分析过程的三个阶段,数据准备、探索式分析和深度分析全部涵盖。结果,一个专注“洗剪吹”的平台就此诞生了。
数据准备,“洗”尽铅华
在数据分析领域,数据准备是一切分析的前提所在。由于数据分析的核心是数据,但是并非全部数据是都可以直接使用的。由于数据可能来自于企业自身的数据收集系统,可能来自网上的其他企业,也可能是第三方数据收集机构,各种类型数据混杂在一起,水平参差不齐,导致很多数据并不能达到可处理条件。但是如果简单粗暴的过滤掉这些数据又将造成不可估量的损失,因此平台中,数据的前期处理准备工作便成了整个分析过程的前提所在。
但是这一前提却成为了很多平台的困扰所在。如果采用大公司的ETL进行处理,虽然可以清洗的比较精细,但是消耗的时间却有所提升,且未必符合后续分析的要求,违背了平台化的初衷;如果采用的手段过于简单,则可能导致一些数据处理不合格而造成数据流失。2015年,一些新的产品给出了答案,以永洪科技最新的一站式大数据分析平台Yonghong Z-Suite V6.0为例,数据并没有进行彻底的清洗,而是利用自服务把原始数据进行加工,做一些诸如数据清洗、表关联关系设定等轻量级的数据建模,最终变为可分析使用的中间数据。而利用这一方案作为数据准备方案,在保证了速度和用户的体验感的同时,所得到的处理结果对后续的使用也有较好的适应。
“剪”的断,理不乱,是探索式分析
探索式分析是平台的主体,在数据准备完成后可以提供给客户全面的数据分析(数据分析师培训)服务。这一阶段的优势在于用户可以根据业务需求灵活的变换数据组合维度和指标,调整指标的计算方法,选择适配的展现形式,通过符合用户逻辑直觉的交互式体验,得出探索式分析结果。
从中可以看出,探索式分析最大的特色就在于他的灵活性和不可预见性。当用户针对某事件有疑问时,平台可以从多角度、多维度做出解答,同时由于角度的不确定,给出的答案也就就有不可预见性,用户可以迅速的从更多的角度了解的产品可能存在的问题。探索式分析,这种灵活到自己都想不到的特质所能带来的也就不仅仅是授之以鱼,还能促使用户提升看待问题的视野,透过问题看本质,得到数据分析真正的价值,做到授之以渔。
另外,与传统平台相比,探索式分析还提升了其易用性和用户体验。以往来讲,由于传统分析所得出的结果表现方式单一、不够灵活等原因,B2B行业是不太注重用户体验的。这就导致了数据分析最终的结果只有公司顶层人员才能得知,据此作为公司改进的判断依据。但毕竟一线人员才是数据的直接产生者和执行者,他们每天面对新的问题会有新的需求,以往的方式对这个矛盾则显得束手无策。而探索式分析则可以很好的解决这一点,使用难度较低,更多的人可以去用,去分析,去解决,去得到他们所需要的东西,然后将所得结果灵活的呈现给公司的各个层面,充分发挥数据分析的优势,提升企业整体水平。
深度式分析,“吹”尽黄沙始到金
探索式分析提供给客户数据分析的广度,而深入式分析则提供给客户深度。那么为什么客户会需要深入式分析呢?原因在于探索式分析是有自身的限制的。如果客户看遍千山,用尽所有维度依然未能解决问题呢?如果数据模式没有被完全识别,客户如何得知哪些维度是重要的呢?如果客户得到了探索式分析的结果,却感觉不够有说服力呢?在这种情况下,常规分析方法已经不能满足客户对数据分析的需求,这时深度分析就可以派上用场了。
深度分析可以在未识别的模式下,通过挖掘算法,对数据的特征、规律和预测给予分析人员指导。当客户面对未知数据时,难以确定从哪些维度入手,结果自然是没有维度可选。如果没有维度怎么办?自己创造维度。一直以来,深度分析对于很多客户来讲都是可望而不及的,其技术要求门槛较高,CDa人才稀缺,挖掘算法难度较大,让并不熟悉的基层业务人员学习使用更是困难。那么能否做到在不懂挖掘算法的同时还可以使用深度分析呢?平台可以做到。在找不到维度分析时,深度分析作为不属三界之内的第四维度被客户使用。针对业务人员常用的几个功能如聚类、分类、回归、时序等算法布置在平台内,降低使用难度,让基层人员亲自使用深度挖掘寻求自身所需。
在一站式数据分析平台中,数据准备阶段由自服务完成,迅速得到可数据分析师分析数据后,深度式分析与探索式分析进行有机结合,二者各司其职,互补互助。让基层人员在面对任何维度,任何层次的数据分析时都可以轻松应对。身为“洗剪吹”,就要有一颗吸引大众关注的心啊!
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10