一站式大数据分析平台,“洗剪吹”的执着
2015年,平台化的发展趋势日益明显,在大数据领域尤为突出。于是闻风而动的数据分析厂商也开始致力于构建一个快速、便捷的一站式大数据分析(数据分析师认证)平台,把数据分析过程的三个阶段,数据准备、探索式分析和深度分析全部涵盖。结果,一个专注“洗剪吹”的平台就此诞生了。
数据准备,“洗”尽铅华
在数据分析领域,数据准备是一切分析的前提所在。由于数据分析的核心是数据,但是并非全部数据是都可以直接使用的。由于数据可能来自于企业自身的数据收集系统,可能来自网上的其他企业,也可能是第三方数据收集机构,各种类型数据混杂在一起,水平参差不齐,导致很多数据并不能达到可处理条件。但是如果简单粗暴的过滤掉这些数据又将造成不可估量的损失,因此平台中,数据的前期处理准备工作便成了整个分析过程的前提所在。
但是这一前提却成为了很多平台的困扰所在。如果采用大公司的ETL进行处理,虽然可以清洗的比较精细,但是消耗的时间却有所提升,且未必符合后续分析的要求,违背了平台化的初衷;如果采用的手段过于简单,则可能导致一些数据处理不合格而造成数据流失。2015年,一些新的产品给出了答案,以永洪科技最新的一站式大数据分析平台Yonghong Z-Suite V6.0为例,数据并没有进行彻底的清洗,而是利用自服务把原始数据进行加工,做一些诸如数据清洗、表关联关系设定等轻量级的数据建模,最终变为可分析使用的中间数据。而利用这一方案作为数据准备方案,在保证了速度和用户的体验感的同时,所得到的处理结果对后续的使用也有较好的适应。
“剪”的断,理不乱,是探索式分析
探索式分析是平台的主体,在数据准备完成后可以提供给客户全面的数据分析(数据分析师培训)服务。这一阶段的优势在于用户可以根据业务需求灵活的变换数据组合维度和指标,调整指标的计算方法,选择适配的展现形式,通过符合用户逻辑直觉的交互式体验,得出探索式分析结果。
从中可以看出,探索式分析最大的特色就在于他的灵活性和不可预见性。当用户针对某事件有疑问时,平台可以从多角度、多维度做出解答,同时由于角度的不确定,给出的答案也就就有不可预见性,用户可以迅速的从更多的角度了解的产品可能存在的问题。探索式分析,这种灵活到自己都想不到的特质所能带来的也就不仅仅是授之以鱼,还能促使用户提升看待问题的视野,透过问题看本质,得到数据分析真正的价值,做到授之以渔。
另外,与传统平台相比,探索式分析还提升了其易用性和用户体验。以往来讲,由于传统分析所得出的结果表现方式单一、不够灵活等原因,B2B行业是不太注重用户体验的。这就导致了数据分析最终的结果只有公司顶层人员才能得知,据此作为公司改进的判断依据。但毕竟一线人员才是数据的直接产生者和执行者,他们每天面对新的问题会有新的需求,以往的方式对这个矛盾则显得束手无策。而探索式分析则可以很好的解决这一点,使用难度较低,更多的人可以去用,去分析,去解决,去得到他们所需要的东西,然后将所得结果灵活的呈现给公司的各个层面,充分发挥数据分析的优势,提升企业整体水平。
深度式分析,“吹”尽黄沙始到金
探索式分析提供给客户数据分析的广度,而深入式分析则提供给客户深度。那么为什么客户会需要深入式分析呢?原因在于探索式分析是有自身的限制的。如果客户看遍千山,用尽所有维度依然未能解决问题呢?如果数据模式没有被完全识别,客户如何得知哪些维度是重要的呢?如果客户得到了探索式分析的结果,却感觉不够有说服力呢?在这种情况下,常规分析方法已经不能满足客户对数据分析的需求,这时深度分析就可以派上用场了。
深度分析可以在未识别的模式下,通过挖掘算法,对数据的特征、规律和预测给予分析人员指导。当客户面对未知数据时,难以确定从哪些维度入手,结果自然是没有维度可选。如果没有维度怎么办?自己创造维度。一直以来,深度分析对于很多客户来讲都是可望而不及的,其技术要求门槛较高,CDa人才稀缺,挖掘算法难度较大,让并不熟悉的基层业务人员学习使用更是困难。那么能否做到在不懂挖掘算法的同时还可以使用深度分析呢?平台可以做到。在找不到维度分析时,深度分析作为不属三界之内的第四维度被客户使用。针对业务人员常用的几个功能如聚类、分类、回归、时序等算法布置在平台内,降低使用难度,让基层人员亲自使用深度挖掘寻求自身所需。
在一站式数据分析平台中,数据准备阶段由自服务完成,迅速得到可数据分析师分析数据后,深度式分析与探索式分析进行有机结合,二者各司其职,互补互助。让基层人员在面对任何维度,任何层次的数据分析时都可以轻松应对。身为“洗剪吹”,就要有一颗吸引大众关注的心啊!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13