由于过去所有报告都指出这种增长和扩张,所以这并没什么。Venturebeat指出:“尽管到2019年,大数据市场将有近500亿美元规模,最但令人兴奋的是机器数据分析的影响力才刚刚起步。机器数据分析将是大数据领域中增长最快的部分,复合年均增长率将超过1000%。”
发展基于云的解决方案提供了很多机会,并且这种发展不会逆转。从近年来的趋势看,越来越多的公司增加基于云的解决方案并抓住机会抽取、搜集数据以获得潜在的信息和知识。
Absolutdata Analytics联合创始人兼执行副总裁Suhale Kapoor强调:“向云计算的快速转变:云成为理想的信息存储空间。它被快速接纳的速度会持续到2016年。根据技术商业研究,大数据将导致巨大的云增长; 排名前50的公共云提供商的收入从2013年第四季度的47%上升至62亿美元。”
不难预测,在2016年,云计算、数据开放机会、分析和机器学习将驱动业务发展。
应用程序作为新一代记录和机器数据分析以拥有自我提升能力,在云层,使用预测算法使得持续改进、持续集成和持续部署成为可能。应用程序将向用户学习,从这个角度看,用户作为系统架构师告诉系统他们是谁、他们需要什么、系统应该怎么和他们交互。
Gartner认为先进的机器学习最鼎盛时期将发生在2016年,他说:“先进的机器学习中的深层神经网络超越了经典的计算和信息管理,可以通过创建自主学习系统等方式感知世界(尤其适合大型、复杂的数据集)…正是这些使得聪明的机器变得“智能”。深层神经网络使得硬件和基于机器的软件能自主学习环境中所有功能,从最细微的细节中抽象出全面的内容。这个领域正在快速发展,组织必须考虑如何运用技术以获得竞争优势。”系统运用先进机器学习的能力不应局限于发现外部信息,也应包括适应系统本身和怎样与用户交互。
系统进行数据分析需要了解问题本身、问题的框架以及用户会选择怎样的词汇和语法提出问题。用户不在需要痛苦得使用查询和编程语言结构以了解数据。系统将了解人类自然语言,比如:提取所有关于我对于x、y和z的理解。系统之所以可以这样是基于用户多次用结构化编程语言(一种机器可以理解的语言)问这些问题以及非专业化用户匹配新词汇。
由于技术格局的变化,2016年将出现自我学习应用程序。麻省理工大学CEO Himanshu Sareen指出此举正在推进机器学习技术变得可用:“就像所有主要的云计算公司(亚马逊网站服务、谷歌、IBM等)提供分析服务一样,这些公司在云端提供机器学习应用程序接口。这些接口允许开发人员每天构建智能、数据驱动的应用程序。”
我们的预测是:到2016年,由于深度学习技术的发展将会出现更多的自主学习应用程序。
尽管程序员高度专业化,数据科学家和数据分析师(数据分析师培训)的排他性见解也不会消除。来源于数据的知识将不再掌握在专家手中,并且技术将再次使信息大众化。根据Hortonworks首席技术官Scott Gnau所说,提供自我支持和自我分析的易用程序的需求已经被商业认可。他说:“简化大数据技术有市场需要,并且在技术、消费等各个方面都存在机会。明年将会有显著的简化过程。”
数据将会变得大众化,从程序员到数据科学家再到数据分析师,就像Absolutdata联合创始人兼执行副总裁Suhale Kapoor所说:“甚至那些没有受过特殊训练的人将开始渴望参与分析。这也解释了为什么越来越多的公司采用让终端用户应用统计、寻求解决方案并且重视数据平台……人类不可能知道所有正确的事情,受自身的局限性,这些问题都含有偏见,会受自己的假设、选择和我们的主观影响。2016年,我们将看到从假设分析(我们依靠分析师提出正确无偏见的问题)到自动化机器学习和智能模式发展技术的强大转变,客观地提一个问题,消除偏见,克服局限。”
“历史上,自我服务数据发现和大数据分析是商业智能的两个独立能力。然而,公司将看到这两个领域的融合带来更大的转变。大数据分析工具将会扩展,使管理者和执行者在需要时进行全面自助服务探索,而不需要掌握主要信息技术。这个预测来自于商业智能和分析公司Targit12月份的研究…..自助式BI让IT更强大,使业务用户能用数据创造和发现见解,而不牺牲促使数据驱动组织形成的大数据分析结构。”
我们能自信得预测,到2016年,越来越多的数据分析应用程序将需要更少的技术专长。
大数据(数据分析师)处理引擎的成熟使得敏捷的数据开发和分析能够深入了解大量不同且复杂的数据。连接和组合数据集开启了数据孤岛中的见解并且将自动在后台的软件即服务应用程序运行而不需要手工操作电子表格。
Gartner副总裁兼研究员David Cearley把不断扩展的终点比作“设备网”,他认为:“人们可以不断访问应用程序和信息并且与人、社会、政府和企业互动。后移动世界关注的焦点将转移到那些被设备网而不是传统移动设备包围的移动用户。随着设备网的发展,我们期待连接模型扩展并且设备之间出现更多的合作互动”。
在同一份报告中,Cearley说:“信息总是无所不在,但是经常是孤立的、不完整的、不可用或者无法了解的。语义工具如图数据库和其他新兴数据分类和信息分析技术的发展使泛滥的数据有意义。”
这是一个简单的预测,但是越来越多来自不同源的数据集将会被聚集以获得更多见解,这个显而易见的趋势将发生在2016年。
具有收集、探索复杂数据集的能力后急需可以理解数据的工具。那些将复杂数据的信息可视化的工具越来越成熟且应用越来越广泛。Absolutdata Analytics联合创始人兼执行副总裁Suhale Kapoor说:“可视化将是王道:图片胜过文字不是新现象—人脑天生偏爱图表和图形而不是一堆古板的电子表格。这个事实被随时欢迎可视化软件的数据工程师认同,他们希望能够以图片格式看到分析结论。”
可视化在数据到知识转变中确实起到杠杆作用,这也将使更多自适应和动态可视化工具出现。“图形和图表确实引人注目,但只是静态,有时会让企业用户对数据的意义产生虚假的安全感或者缺乏安全感……相比漂亮图表,可视化工具将更需要随着趋势变化动态得给出正确答案,促使动态指示板出现以及细微变化一出现就能动态填充图表,以揭示易被忽略的见解。”
我们预测:在2016年,新的数据中心符号、一种获得信息的数据交流可视化语言将变得更强大,更重要并将成为信息学的引擎。CDA数据分析师认证
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17