想要成为数据分析师需要从零开始,首先从基本开始学习,也是一些工作了很长时间的数据从业者要关注的问题。现以网站分析师的成长为例进行说明,其他职位类似。
1.基本认知阶段
基本认知阶段通常是刚入行的数据分析师所处的阶段。基本认知阶段要做的是尽快熟悉所要从事工作的基本环境、工具、流程、制度和常识,具体包括数据工具的基本认知和使用技巧、数据概念和基本常识、数据与业务对接和沟通流程、基本业务运转常识等。对于网站数据分析师的具体要求如下:
了解基本的网站分析和数据工具,网站分析工具如Google Analytics、百度统计、Adobe Analytics、Webtrekk等;数据分析工具如Excel、SPSS、Clementine、SAS、R等,了解不同工具有哪些功能及差异点。
了解网站分析及数据分析的基本概念、定义和规则,比如需要清楚UV、PV、Visit、IP的区别以及数据差异的影响因素。
了解互联网工作的基本机制,掌握基本的HTML语言、编程语言规则和JavaScript规则,如果还能了解一些Cookie、缓存机制、HTTP信息会更有利于后期的发展。
了解所服务的业务对象,如营销业务、网站运营业务、会员相关业务等,理顺各种业务的具体含义、范畴、流程等,并且能把数据与业务工作关联起来。
关于如何学习或获得相关的知识,有以下几种方法可以参考:
定位行业或企业内的大师,并通过其博客、文章、专著、书籍等快速入门。
拓展相关视野,通过与行业大师相关联的人脉关系掌握更多的学习资源,如友情链接、好友推荐、朋友圈、知识联盟等。
书籍是系统性学习的重要途径,但不是唯一途径,很多工具的帮助中心不仅免费,而且介绍了非常多关于工具技能和应用场景的相关知识,是不可多得的优秀学习资源。
行业内的知识门户可以作为学习时的重要参考点,其中不乏精彩案例、知识解析、深入挖掘,以及行业知识推荐等优秀板块。
2.个人实践阶段
在经过基本认知阶段之后需要将掌握的基本理论、知识、经验付诸于个人实践。
第一步是搭建实践所需的网站环境。如果情况允许,建议购买属于自己的域名和服务器空间,利用开源系统搭建一套属于自己的网站,简单而又无须过多地投入资金;如果确实没有条件,至少需要在在自己的计算机上搭建一套测试环境。
第二步是部署网站跟踪代码。将标准代码、定制代码、特殊作用的代码统统实践一遍,免费的网站分析工具都可以作为实践对象,以便系统地了解和比较不同的系统部署、实施及报告效果的差异性,从而加深对工具、原理、概念的理解。
第三步是进行网站分析。完成系统部署后,所有的报表及其中的记录数、字段值、功能点至少要全部使用一遍,遇到问题后首先通过帮助中心自己寻找答案,其次才是寻求别人的帮助。
第四步是实践总结与提高。实践总结是个人提高的重要步骤,通过总结能发现历史问题中的规律,并能把问题及解决方案融会贯通进而得到系统性的提升。
3.企业实践阶段
企业实践是第三阶段。建议新手不要一开始就拿企业的工作环境进行实践,原因是在没有具备一定能力和经验的条件下,实践可能会对企业的数据安全、数据质量造成灾难性的后果,尤其是采用SAAS模式的网站分析工具的数据是不可逆的,数据一旦丢失将无法找回。
在企业实践阶段,企业会有大量的业务类需求可供实践,同时在更高流量的支持下,个人的实践经验会得到极大丰富。在数据量小、业务场景简单的情况下,网站分析师面临的问题少,个人提升有限;但当面临海量数据、实时要求、复杂流程时,个人能力和经验会快速积累。比如,以下场景是只有在大数据量的情况下才会出现的:
在用户登录谷歌账户后,通过Adwords推广的关键字将被设为not set;
在唯一数据记录数达到一定阀值后,更多的流量会被合并为“低流量”;
当每天请求量达到1000万时,很多工具数据延迟问题非常严重,甚至会无法处理数据;
当数据量超过某个限制,某些工具会存在抽样,相同的维度在不同的报表下数据不一致。
对于企业中存在的种种问题,我相信“问题=机会”。
4.行业实践阶段
当个人的能力已经完全可以自如地应对企业实践中的种种需求时,下一步需要把视野拓展到行业领域,具体包括两方面的内容:一是数据视野,二是商业视野。
数据视野。网站分析只是整个数据分析体系的一个分支,数据分析仅是整个数据工作体系的一个环节。更高层次的数据视野意味着数据分析师不仅仅局限于分析工作,还要熟悉整个数据工作系统的各个环节。
商业视野。除BAT这种超级公司外,通常每个企业都有自己的聚焦领域,这意味着该企业的状态最多只能代表该行业的经验。所谓隔行如隔山,不同行业中的数据需求、工作流程、工作机制、工作内容大不相同,因此很难将经验完整地复制到其他行业。对于行业的突破可能有以下三种选择:
进入超级公司如BAT,几乎在每个互联网行业都有投资;
换公司是最直接的方法,但通常成本过高风险较大;
进入乙方服务公司,直接服务于不同的行业客户。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24