社会的发展,市场的繁荣,互联网的热闹,让信息数据越来越多,因此大数据时代诞生。大数据被誉为继云计算、物联网之后IT产业又一次重要技术变革。
中国企业已然身处大数据时代,但如何利用大数据技术,成功提升自身价值,无疑仍是企业需要去探索的课题。近日,Teradata天睿公司大中华区大数据事业部总监孔宇华表示,企业需要从分析入手去挖掘大数据价值,作为连续14年获得Gartner公司评选的数据仓库领导者象限企业,Teradata始终站在数据仓库和数据分析的前列,通过不断的积累与创新,帮助客户充分呈现其大数据价值。
分析:大数据价值之所在
孔宇华认为,数据的价值不在于存储,而是在于分析。
现在,很多企业认为把各种结构化数据与非结构化数据都收集起来,放到一个地方进行统一存储就能够把大数据做好。而事实上,通过分析,才能释放出数据的价值。
“我们想告诉客户的是,不一定需要100个PC 服务器才能把大数据做好,不一定需要1PB的数据才能把大数据做好。”孔宇华表示,“做大数据的时候,可以从一个应用、一个业务的需求开始,通过不同的数据分析、不同的数据源,把数据应用起来。”
据了解,Teradata Aster大数据探索平台可以汇集不同的数据源、结构化的数据、非结构化的数据,并且有着很多不同的分析方法,如SQL、MapReduce,关联分析、路径分析、文本分析等,通过将这些分析方法进行结合,将充分释放数据的的价值。
此外,Teradata的数据探索平台可以在很短的时间内,将数据进行整理、分析,并将数据的价值展现给客户。“当企业看到数据的价值后,再做相关投入,就不会觉得大数据只是一个概念,是对我这家企业本身毫无影响的。让管理者快速看到大数据背后的真正价值,正是Aster平台的价值所在。”孔宇华表示。
Aster:大数据分析的瑞士军刀
“Aster就是大数据分析的瑞士军刀。”在向记者展示Teradata Aster平台最新成果时,孔宇华如此描述。
同Hadoop相比,Aster探索平台基于SQL、SAS或R的界面,利用其进行大数据分析会更方便,而且数据永远存在一个地方,进行不同的分析时只需要调用不同的工具就可以完成,避免了数据在不同位置间的移动。
另外,Aster还提供了丰富的数据接口,能够连接到Hadoop、数据仓库以及其他提供API的数据源,使得数据无需转换到特定格式即可以进行调用分析,节省了大量数据转换与适配的时间。由于Aster提供了基于SQL运算引擎的支持,因此也可以连接到其他主流的商业智能(BI)工具,获得丰富的可视化功能。
孔宇华介绍,针对Aster大数据探索平台,Teradata新增了SNAP Framework(无缝网络分析处理框架),实现了分析引擎和文件存储的无缝和同步集成,能够执行并优化跨分析引擎和文件存储的查询。
SNAP Framework除了行存储,还支持列存储、文件存储等多种存储方式。在分析层面,除了传统的SQL和MapReduce之外,还引入了最新的图形分析引擎,能够处理大规模分析图表查询以及预建图形功能,并可以应用到客户流失、产品关联性、欺诈侦测以及推荐引擎等分析场景。
就在上个月,Teradata实现了Aster与R的整合,通过放宽内存和处理能力限制条件,扩展开源R语言分析能力。在数据库内运行R语言,可高速处理海量数据,满足企业分析能力需求。
孔宇华表示,Teradata Aster R为R语言分析师提供企业级就绪的商业分析解决方案,可以帮助R语言分析师从多个数据源访问及整合详细数据,通过更广泛的分析方法获得更准确的结果,具有高度可扩展性、可靠性和易用性。
针对Hadoop,Teradata则选择了合作与收购的方式。通过与Hortonworks的合作,为客户提供Hadoop相关的平台和工具。通过收购Revelytix和Hadapt,进一步完成了对Hadoop的整合。
“未来在Teradata的统一数据架构中,Hadoop将主要作为数据获取和整合平台,Aster主要作为数据挖掘和分析平台。”孔宇华表示。
平台、人员、流程:大数据落地三要素
怎样做才能实现大数据的落地?孔宇华给出的答案是:平台、人员和流程。
首先,需要有一个合适易用,并且能够和企业现有平台轻易进行结合;其次,需要内部人员具备一定的技能;最后,流程制度方面,需要结合大数据需求的敏捷项目管理方法,根据业务需求快速让技术人员利用平台提升数据的价值。
企业如何利用现有人员的技能,找出数据里的价值,恰恰是Teradata Aster平台能够赋予客户的。孔宇华表示,通过Teradata Aster大数据探索平台,企业可以在很短的时间内,利用原有的技能进行大数据分析,让管理者看到大数据背后的真正价值。
目前,Teradata在全球范围内已经积累了大量的成功案例,与超过十个行业的用户进行了合作,从传统的优势行业,如电信、金融、保险,到电商、医疗、制造与零售等,Teradata Aster能够对各种场景进行深入分析,并通过丰富的可视化形式进行展现。
据悉,Teradata在中国成立了大数据技术研发团队,主要负责平台、数据库与分析函数的开发。另外,Teradata在中国还拥有优秀的大数据实施团队和实施合作伙伴,能够帮助客户充分呈现其大数据的价值。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20