掘金大数据 你准备好了吗?
关于大数据,大家都在谈论它,也想要尝试它,但是很少有人知道大数据究竟是什么样子。
大数据时代无可争议的来临了,源自全球数十年的技术积累,但仅用了最近两三年时间,便迅速渗透到各个行业。相比十几年前的互联网泡沫,大数据的发展趋势更加实际、与企业业务紧密相关、盈利模式也更加清晰。业界几乎一致认同,由大数据推动的行业变革,将会对企业竞争模式产生颠覆性影响。但另一方面,企业真正利用大数据分析并获得价值的商业案例仍然少之又少。
▲IBM全球业务咨询服务 郭树勇
在世界杯期间,IBM和腾讯展开了一场以社交大数据分析为基础的全新媒体报道模式的探索,在这次合作中,利用IBM社交大数据技术,腾讯实现了针对微博等社交媒体平台上的信息进行大数据分析,开创了紧抓球迷需求的、更新颖、更生动、更个性化的世界杯赛事报道,实现了全新的赛事体验。
不过这个案例仅仅展现了大数据技术和能力的一部分,社交大数据分析价值远不止于此。大数据的商业价值,也需要我们从更广阔的视角来理解。
大数据蕴含大价值
首先,大数据分析为何如此重要?
这是因为我们整个社会生活模式、消费模式都在不断发生改变:截至2013年6月底,我国网民数量达到5.91亿,较2012年底增加2656万人。手机网民规模达4.64亿,网民中使用手机上网的人群占比提升至78.5%;即时通信在网民中的覆盖率达到了86.9%,其中微信覆盖率为61.9%;社交网站(包含QQ空间)覆盖率为60.7%,微博覆盖率为55.4%。
这些数据显示,社交媒体已经成为企业寻找客户资源的最大的数据库,以及收集反馈和传播市场信息的主要途径。这些看似随意和杂乱无章的社交大数据中,其实蕴含着无穷的价值,是企业未来的利润来源。
客户的生活和消费模式正在发生改变,每个企业都在这场巨大的变革中寻求着新的技术和能力,希望在大数据的变革浪潮中抓住成功机会。可喜的是,中国的CMO已经意识到营销管理在将来的巨大变化,并且已经开始在投资/整合技术与分析方面做出相应的准备。
在IBM每年实施的调研中,中国的CMO列出了可能对企业营销管理产生影响的13个因素,其中“数据爆炸”排名第一,占到85%的比例;排名第二的因素则是“社交媒体”,占到了75%的比例。调研还显示了CMO为了应对数据爆炸和社交媒体所愿意进行的改变,其中70%的CMO认为“技术投资”是应对大数据挑战的首要任务。
针对行业的定制化大数据分析
那么企业究竟该如何进行技术投资?
社交大数据应该为企业提供社交环境下客户全生命周期的支持,从初期了解客户、了解市场开始,进而影响到产品设计和服务流程改进,并渗透到销售的环节,最终留住老客户并拉动新客户。所以我们看到企业的大数据应用应该是一个闭环的流程,并且需要针对不同的行业特征提供定制化的解决方案。
我们首先需要理解客户的行业应用特征,了解客户对大数据分析的期望和需求,梳理大数据分析的框架结构,对数据来源进行归类和分析,让数据分析的引擎理解这些信息及其背后蕴含的潜在价值,并针对不同的客户需求建立大数据分析的模型,这样大数据分析架构才能够真正适应不同行业的个性化需求。
从技术角度看,巴西世界杯可说是一次跑在数据上的世界杯。在互联网时代下,用户通过移动终端在社交媒体上创造了海量的信息,IBM和腾讯充分利用了身边的海量社交信息,了解并引爆观众的焦点,并从媒体的角度加以解读。这样的报道模式不仅仅是腾讯的专利,在更多体育赛事中,社交大数据都得到更充分的利用。IBM结缘体育已经几十年,参与支持了奥运会、四大满贯网球赛事等多项体育盛会的报道。今天体育赛事的报道和传播需求已经发生了很大的变化,具体包括三点:
一、面向的受众更加细分。今天媒体面对的受众不再是抽象的一群人,而是具象的某一类、甚至某一个人。就像在腾讯世界杯报道中,我们为每位球星的球迷绘制差异化的个性形象图一样,媒体需要了解每个人的特点和喜好,并进行针对性的传播。因此,每个受众的个体都需要发声并获得相应的反馈。
二、获得真实的声音。媒体长期以来希望了解受众的反馈,但是反馈是否真实非常重要。传统的市场调研往往带有一定的局限性,取样数量有限,也并不能真实反应受众最直接的想法和观点。社交大数据平台则很好的补足了这一点,每个受众都在社交平台上自由的吐槽或者赞扬某位球星的表现,这是最真实的观点和情绪的表达,因而格外宝贵。
三、从单向传播转为双向互动。对媒体来说,500万收视观众和500万积极互动的受众是非常大的区别,这些积极的互动群体可以促进媒体的二次传播,强化媒体的影响力,进而帮助媒体行业促进自己的收入、销售和后续发展。
大数据不仅驱动传媒行业发生变革,更多行业都在这场大数据浪潮中发生改变。举例来说,在快消品行业中,当客户购买一杯饮料时,究竟是喜欢饮料的口感、还是包装时尚感、还是更看重低热健康这些因素,对饮料供应商来说是十分宝贵的信息。社交媒体平台提供了最广泛的人群样本和最真实的用户反馈,通过社交大数据分析,饮料供应商了解用户购买饮料的背后原因,就能调整产品定位,推出适合目标消费人群的产品。
而在航空业中,航空企业家开通航线往往涉及到巨大的成本投入,一条航线开通后,即使只有30多个人乘坐,也必须按时起飞。如果能够通过社交大数据分析年轻人的度假、旅游的热点区域,和偏爱喜好,就能够判断开通一条航线之后的航空收益,并针对不同的度假人群,如年轻情侣、成熟家庭等推出不同的定制服务。
针对不同行业的定制化大数据需求,IBM提供了强大的大数据支持团队帮助客户应用大数据分析,例如IBM研究院团队对Watson认知计算有深入把握,了解如何通过Watson认知计算平台进行客户的情感、性格和行为分析;IBM全球信息科技服务团队则基于Softlayer云计算平台为大数据基础架构提供了强劲的支持;IBM 全球业务咨询服务团队拥有多年行业服务经验,对媒体、交通、零售、金融、电信等多个行业核心业务拥有深入理解,帮助客户从自身需求出发,制定合理的大数据执行战略。这些力量的融合才使得大数据的价值能够真正释放。
大数据的应用前景远远不止于此。伴随着信息科技的进步,计算、存储能力的持续提升,开采这些大数据金矿将成为更普遍和必要的商业竞争手段。数据将成为企业做大做强的战略性资产,甚至推动行业融合兼并。对国家来说,数据资源以及对数据资源的利用水平,更是体现一个国家综合国力的重要组成部分,成为陆、海、空权益之外的另一种国家核心资产。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21