大数据将重构很多行业的商业思维和商业模式
我们在这里狂野地想象一番,如果将汽车全面数字化,都大数据了,会产生什么结果?
有些人说,汽车数字化,不就是加个MBB模块吗?不,这太小儿科了。在我理想中,数字化意味着汽车可以随时联上互联网,意味着汽车是一个大型计算系统加上传统的轮子、方向盘和沙发,意味着可以数字化导航、自动驾驶,意味着你和汽车相关的每一个行动都数字化,包括每一次维修、每一次驾驶路线、每一次事故的录像、每一天汽车关键部件的状态,甚至你的每一个驾驶习惯(如每一次的刹车和加速)都记录在案。这样,你的车每月甚至每周都可能产生T比特的数据。
好了,我们假设这些数据都可以存储并分享给相关的政府、行业和企业。这里不讨论隐私问题带来的影响,假设在隐私保护的前提下,数据可以自由分享。
那么,保险公司会怎么做呢?保险公司把你的所有数据拿过去建模分析,发现几个重要的事实:一是你开车主要只是上下班,南山到坂田这条线路是非繁华路线,红绿灯很少,这条路线过去一年统计的事故率很低;你的车况(车的使用年限、车型)好,此车型在全深圳也是车祸率较低;甚至统计你的驾驶习惯,加油平均,临时刹车少,超车少,和周围车保持了应有的车距,驾驶习惯好。最后结论是你车型好,车况好,驾驶习惯好,常走的线路事故率低,过去一年也没有出过车祸,因此可以给予更大幅度的优惠折扣。这样保险公司就完全重构了它的商业模式了。在没有大数据支撑之前,保险公司只把车险客户做了简单的分类,一共分为四种客户,第一种是连续两年没有出车祸的,第二种过去一年没有出车祸,第三种过去一年出了一次车祸,第四种是过去一年出了两次及以上车祸的,就四种类型。这种简单粗暴的分类,就好像女人找老公,仅把男人分为没有结过婚的、结过一次婚的、结过二次婚的、结过三次及以上婚的四种男人,就敢嫁人一样。在大数据的支持下,保险公司可以真正以客户为中心,把客户分为成千上万种,每个客户都有个性化的解决方案,这样保险公司经营就完全不同,对于风险低的客户敢于大胆折扣,对于风险高的客户报高价甚至拒绝,一般的保险公司就完全难以和这样的保险公司竞争了。拥有大数据并使用大数据的保险公司比传统公司将拥有压倒性的竞争优势,大数据将成为保险公司最核心的竞争力,因为保险就是一个基于概率评估的生意,大数据对于准确评估概率毫无疑问是最有利的武器,而且简直是量身定做的武器。
在大数据的支持下,4S店的服务也完全不同了。车况信息会定期传递到4S店,4S店会根据情况及时提醒车主及时保养和维修,特别是对于可能危及安全的问题,在客户同意下甚至会采取远程干预措施,同时还可以提前备货,车主一到4S店就可以维修而不用等待。
对于驾驶者来说,不想开车的时候,在大数据和人工智能的支持下,车辆可以自动驾驶,并且对于你经常开的线路可以自学习自优化。谷歌的自动驾驶汽车,为了对周围环境作出预测,每秒钟要收集差不多1GB的数据,没有大数据的支持,自动驾驶是不可想象的;在和周围车辆过近的时候,会及时提醒车主避让;上下班的时候,会根据实时大数据情况,对于你经常开车的线路予以提醒,绕开拥堵点,帮你选择最合适的线路;在出现紧急状况的时候,比如爆胎,自动驾驶系统将自动接管,提高安全性(人一辈子可以难以碰到一次爆胎,人在紧急时的反应往往是灾难性的,只会更糟);到城市中心,寻找车位是一件很麻烦的事情,但未来你可以到了商场门口后,让汽车自己去找停车位,等想要回程的时候,提前通知让汽车自己开过来接。
车辆是城市最大最活跃的移动物体,是拥堵的来源,也是最大的污染来源之一。数字化的车辆、大数据应用将带来很多的改变。红绿灯可以自动优化,根据不同道路的拥堵情况自动进行调整,甚至在很多地方可以取消红绿灯;城市停车场也可以大幅度优化,根据大数据的情况优化城市停车位的设计,如果配合车辆的自动驾驶功能,停车场可以革命性演变,可以设计专门为自动驾驶车辆的停车楼,地下、地上楼层可以高达几十层,停车楼层可以更矮,只要能高于车高度即可(或者把车竖起来停),这样将对城市规划产生巨大的影响;在出现紧急情况,如前方塌方的时候,可以第一时间通知周围车辆(尤其是开往塌方道路的车辆);现在的燃油税也可以发生革命性变化,可以真正根据车辆的行驶路程,甚至根据汽车的排污量来收费,排污量少的车甚至可以搞碳交易,卖排放量卖给高油耗的车;政府还可以每年公布各类车型的实际排污量、税款、安全性等指标,鼓励民众买更节能、更安全的车。
电子商务和快递业也可能发生巨大的变化。运快递的车都可以自动驾驶,不用赶白天的拥堵的道路,晚上半夜开,在你家门口设计自动接收箱,通过密码开启自动投递进去,就好像过去报童投报一样。
这么想象下来,我认为,汽车数字化、互联网化、大数据应用、人工智能,将对汽车业及相关的长长的产业链产生难以想象的巨大变化和产业革命,具有无限的想象空间,可能完全被重构。当然,要实现我所描述的场景,估计至少50年、100年之后的事情了,估计我这辈子是看不到的。
下面一个想象是围绕着人本身来展开的。人的数字化生存也就是这几十年的事情。我爷爷奶奶那辈子,是在人生末年的时候有照片,算是初步在个人形象方面有了一点数字化,让我们及后代还可以知道爷爷奶奶的光辉形象。而我们从小就有照片,这些年我们的数字化就越来越多了,身份是数字的(就是身份证),银行存款是数字的,照片是全数字,体检单也数字化,购物数字化(淘宝上有我的几十个地址、几百条购物信息、上万次搜索信息),沟通数字化(****上有新的朋友圈生态),初步构建了一个数字化生存的状态。而我们的下一辈或下下一辈将进入完全的数字化生存,人从一出生就有基因图谱,到后续的每一次体检、每一次化验,到每一年、每一个月、每一个日子的活动,到相关亲戚的轨迹,从每一个人,到每一代人,到整个族谱,到整个国家,到整个全球,这些海量数据的产生将从量变到质变,这些数据的挖掘与使用将对人类本身产生革命性的影响。
这里,我们也想象一下:
比如,在你找对象的时候,碰上一位心爱的姑娘,大数据系统就像算命系统一样,根据双方海量数据的挖掘,告诉你和姑娘匹配指数是多少,告诉你全球类似情况的夫妻日后离婚概率是多少,低于某个匹配指数,大数据系统会慎重建议你认真考虑不要这个姑娘继续交往下去。听起来是不是特别像门当户对的数字化呢?当然,你可能会说,这样的人生多没有意思啊,错误本来就是人生最美丽的一部分。呵呵,我只讨论科学问题,对你这种以“浪漫主义”为名,事实上是不以结婚为目的的耍流氓式的恋爱,不予以理睬。其实,我内心也承认,偶尔耍耍流氓是很好的。呵呵,开个玩笑。
又比如,在你找工作的时候,可能会有这么一天,当你面试时,HR会淡定的告诉你,对不起,经过我们的大数据分析,你历来的网贴、微博、总体负面情绪过多,不符合我们企业阳光乐观积极向上的主题,出门左拐就有地铁站,慢走。
再比如,在你过生日的那天,朋友们生日快乐祝福之后,大数据分析系统会告诉你,你的生命将进入倒计时,根据过去几年的身体数字化大数据,根据基因图谱,根据你亲戚的相关情况统计,你有80%的概率在20年内死去,有30%概率在60岁左右因基因缺陷发生脑溢血,因此你要改善生活习惯,并重点加强监控脑溢血发生的可能性。这些事情如果都发生,会出现什么情况?第一,估计人类的生命普遍将延长10年以上,因为很多潜在的突发性恶性疾病爆发的概率大幅度降低了。第二,和上面的汽车故事一样,保险公司也可以基于大数据重构商业模型,可以对每个人的大数据进行分析,对每个人进行针对性的保险业务设计。第三,药厂的商业模式可能也改变了,药厂拥有你相关的大数据,可以为你量身定做药品,西服都能量身定做,药品为什么不能呢?定制的西服更合身,定制的药品肯定针对性更强、副作用更少。西服能量身定做,是因为有你三围的数据,药品能量身定做也是因为有你身体的数据,道理是一样的。第四,国家的医保政策也可能重构,国家能根据大数据系统,分析整体国民素质,分析老龄化情况,分析养老金系统的承受能力,针对性地增强某些区域的医疗资源,或者动态调整养老保险费率,或者动态调整退休年限等等。
对汽车产业和数字化人生的想象告一段落。这里,我想系统回顾一下工业文明的发展历程,首先是物理世界的工业文明,典型是蒸汽机的发明,使汽车、轮船进入生活;然后是数字世界的工业文明,就是IT技术的使用,使PC及各种电子产品进入生活,以及企业数字化系统的建立,使沃尔玛这样的巨型企业产生成为可能;下一步就是物理世界和数字世界的融合,这也就是业界热炒的“工业互联网”、“IT 3.0”,而这里面除了数字技术在传统行业的使用(这个事实上已经在广泛使用)、电子商务在渠道的广泛推行,更重要的就是大数据的产生及挖掘、使用,使企业在管理方式、市场机会挖掘、产品设计、营销、服务、商业模式等发生巨大的变化,这种巨大的变化带来了很多行业的革命性变局,也就是颠覆与改造。这种变化在所谓的低效率的大行业将最为明显与直接。这些所谓的的低效率大行业,就是垄断特征明显、产业规模大、产业链长、历史悠久但长时间变化少、IT应用水平低的行业,如汽车、金融、保险、医疗等。
总结
第一,大数据使企业真正有能力从以自我为中心改变为以客户为中心。企业是为客户而生,目的是为股东获得利润。只有服务好客户,才能获得利润。但过去,很多企业是没有能力做到以客户为中心的,原因就是相应客户的信息量不大,挖掘不够,系统也不支持,目前的保险业就是一个典型。大数据的使用能够使对企业的经营对象从客户的粗略归纳(就是所谓提炼归纳的“客户群”)还原成一个个活生生的客户,这样经营就有针对性,对客户的服务就更好,投资效率就更高。
第二,大数据一定程度上将颠覆了企业的传统管理方式。现代企业的管理方式是来源于对军队的模仿,依赖于层层级级的组织和严格的流程,依赖信息的层层汇集、收敛来制定正确的决策,再通过决策在组织的传递与分解,以及流程的规范,确保决策得到贯彻,确保每一次经营活动都有质量保证,也确保一定程度上对风险的规避。过去这是一种有用而笨拙的方式。在大数据时代,我们可能重构企业的管理方式,通过大数据的分析与挖掘,大量的业务本身就可以自决策,不必要依靠膨大的组织和复杂的流程。大家都是基于大数据来决策,都是依赖于既定的规则来决策,是高高在上的CEO决策,还是一线人员决策,本身并无大的区别,那么企业是否还需要如此多层级的组织和复杂的流程呢?
第三,大数据另外一个重大的作用是改变了商业逻辑,提供了从其他视角直达答案的可能性。现在人的思考或者是企业的决策,事实上都是一种逻辑的力量在主导起作用。我们去调研,去收集数据,去进行归纳总结,最后形成自己的推断和决策意见,这是一个观察、思考、推理、决策的商业逻辑过程。人和组织的逻辑形成是需要大量的学习、培训与实践,代价是非常巨大的。但是否这是唯一的道路呢?大数据给了我们其他的选择,就是利用数据的力量,直接获得答案。就好像我们学习数学,小时候学九九乘法表,中学学几何,大学还学微积分,碰到一道难题,我们是利用了多年学习沉淀的经验来努力求解,但我们还有一种方法,在网上直接搜索是不是有这样的题目,如果有,直接抄答案就好了。很多人就会批评说,这是抄袭,是作弊。但我们为什么要学习啊?不就是为了解决问题嘛。如果我任何时候都可以搜索到答案,都可以用最省力的方法找到最佳答案,这样的搜索难道不可以是一条光明大道吗?换句话说,为了得到“是什么”,我们不一定要理解“为什么”。我们不是否定逻辑的力量,但是至少我们有一种新的巨大力量可以依赖,这就是未来大数据的力量。
第四,通过大数据,我们可能有全新的视角来发现新的商业机会和重构新的商业模式。我们现在看这个世界,比如分析家中食品腐败,主要就是依赖于我们的眼睛再加上我们的经验,但如果我们有一台显微镜,我们一下就看到坏细菌,那么分析起来完全就不一样了。大数据就是我们的显微镜,它可以让我们从全新视角来发现新的商业机会,并可能重构商业模型。我们的产品设计可能不一样了,很多事情不用猜了,客户的习惯和偏好一目了然,我们的设计就能轻易命中客户的心窝;我们的营销也完全不同了,我们知道客户喜欢什么、讨厌什么,更有针对性。特别是显微镜再加上广角镜,我们就有更多全新的视野了。这个广角镜就是跨行业的数据流动,使我们过去看不到的东西都能看到了,比如前面所述的汽车案例,开车是开车,保险是保险,本来不相关,但当我们把开车的大数据传递到保险公司,那整个保险公司的商业模式就全变了,完全重构了。
最后一点,我想谈的是大数据发展对IT本身技术架构的革命性影响。大数据的根基是IT系统。我们现代企业的IT系统基本上是建立在IOE(IBM小型机、Oracle数据库、EMC存储)+Cisco模型基础上的,这样的模型是Scale-UP型的架构,在解决既定模型下一定数据量的业务流程是适配的,但如果是大数据时代,很快会面临成本、技术和商业模式的问题,大数据对IT的需求很快就会超越了现有厂商架构的技术顶点,超大数据增长将带来IT支出增长之间的线性关系,使企业难以承受。因此,目前在行业中提出的去IOE趋势,利用Scale-out架构+开源软件对Scale-up架构+私有软件的取代,本质是大数据业务模型所带来的,也就是说大数据将驱动IT产业新一轮的架构性变革。去IOE潮流中的所谓国家安全因素,完全是次要的。
所以,美国人说,大数据是资源,和大油田、大煤矿一样,可以源源不断挖出大财富。而且和一般资源不一样,它是可再生的,是越挖越多、越挖越值钱的,这是反自然规律的。对企业如此,对行业、对国家也是这样,对人同样如此。这样的东西谁不喜欢呢?因此,大数据这么热门,是完全有道理的。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20