20道问题识别假的数据科学家
雇用数据科学家是不容易的工作,特别是当有一群假的数据科学家在里面装腔作势。这儿有现成的一些问题能够帮助区分真假的数据科学家。
21道必须懂得的关于数据科学的面试问题和答案
如今数据科学家是公认的21世纪最性感的工作,每个人都想分一杯羹。
这就意味着里面会混着一些对大数据装着很懂的人。这些人称自己为数据科学家,但是不具备关于数据方面的能力。
当然他们不是有意去欺骗大家:他们是数据科学家。数据科学本身的崭新性和人们对相关工作内容的不够理解会让他们自己认为因为他们在处理数据,所以他们是数据科学家。
“假的数据科学家经常是很擅长某一特定学科的,然后会坚持他们所在的学科是唯一的真正的数据科学。这个信念没有领会到数据的真正含义,即数据科学是根据科学工具和技术(如:数学方面的,计算机方面的,可视化方面的,分析方面的,统计方面的,经验方面的,还有问题定义,模型建立和验证)完全的应用,然后从数据收集里面获得发现,见识和价值。”
–Kirk Borne ,Booz Allen Hamilton首席数据科学家和Rocket Data Science.org的创办人。
发现假的数据科学家第一个方法是了解你要寻找的人应该具备哪些能力。
明白数据科学家,数据分析师,数据工程师之间的不同是很重要的,特别是在如果你计划雇用他们中的一种的时候。
为了帮助大家从假(或误以为)的数据科学家中找出真的,我们已经准备了20道面试问题,你可以在面试他们的时候采用。
1.解释什么是规则化,为什么它是有用的。
2.你最欣赏哪个数据科学家,是哪个创业企业的。
3.你如何通过多次回归,验证你所创建的模型生成的关于数量结果的预测模型是可变的。
4.解释什么是查全率,它们和ROC 曲线的关系。
5.你如何证实你带到算法里面的一个改进是有意义的,但是没有起到作用。
6.造成分析的根源是什么?
7.你熟悉定价优化,价格弹性,存货管理和竞争智能吗?请举例。
8.什么是检验效能?
9.解释什么是重抽样方法,为什么有用?它们的局限性在哪里。
10.存在很多的假阳性是不是更好,或者许多假阴性呢。请解释。
11.什么是选择误差,为什么它很重要以及你如何避免。
12.请举例,你如何使用试验设计回答关于用户行为的问题。
13.数据格式的“长”和“宽”有什么不同。
14.关于某特定领域的全面的真实信息,你通过什么方式决定相关统计数据无论是否发表于文章都是错的,或者被提出用以支持作者的观点也是不对的。
15.解释Edward Tufte关于图表垃圾的概念。
16.你如何检查极端值,如果你发现了一个你将怎么办?
17.极值理论,蒙特卡洛模拟,数理统计,任意使用其中一种理论,你如何正确预测一件罕见事件的发生概率。
18.推荐引擎是什么?它是如何工作的。
19.解释什么是假阳性和假阴性。为什么区分两者很重要。
20.你在使用什么工作进行可视化。你怎么看待Tableau?R?SAS?(关于图表的)。如何在一个表格或者视频里高效的描绘第五维?
“一个真正的数据科学家懂得如何运用数学和统计学,懂得通过合适的试验性设计创建和验证模型。如果拥有了IT技能,却不会统计技能,你就像只懂得举着手术刀的外科医生一样,只懂得如何拿手术刀(却不会做手术)。”
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21