R语言中大型数据集的回归
众所周知,R语言是一个依赖于内存的软件,就是说一般情况下,数据集都会被整个地复制到内存之中再被处理。对于小型或者中型的数据集,这样处理当然没有什么问题。但是对于大型的数据集,例如网上抓取的金融类型时间序列数据或者一些日志数据,这样做就有很多因为内存不足导致的问题了。
这里是一个具体的例子。在 R 中输入如下代码,创建一个叫 x 的矩阵和叫 y 的向量。
如果用内置的 lm 函数对 x 和 y 进行回归分析,就有可能出现如下错误(当然,也有可能因为内存足够而运行成功):
本文代码运行的电脑的配置是:
CPU: Intel Core i5-2410M @ 2.30 GHz
Memory: 2GB
OS: Windows 7 64-bit
R: 2.13.1 32-bit
在 R 中,每一个 numeric 数 占用 8 Bytes,所以可以估算到 x 和 y 只是占用 5000000 7 8 / 1024 ^ 2 Bytes = 267 MB,离运行的电脑的内存 2 GB 差很远。问题在于,运行 lm() 函数会生成很多额外的变量塞满内存。比如说拟合值和残差。
如果我们只是关心回归的系数,我们可以直接用矩阵运算来计算 β^ :
在本文运行的计算机中,这个命令成功执行, 而且很快(0.6秒)(我使用了一个优化版本的 Rblas, 下载)。然而,如果样本变得更加大了,这个矩阵运算也会变得不可用。可以估算出,如果样本大小为 2GB / 7 / 8 Bytes = 38347922 ,x 和 y 自己就会占用了全部内存,更不要说其他计算过程中出现的临时变量了。
怎么破?
一个方法就是用数据库来避免占用大量内存,并且直接在数据库中执行 SQL 语句等。数据库使用硬盘来保存数据,并且执行 SQL 语句时只是占用少量内存,所以基本上不用过于担心内存占用。不过有得有失,要更加关注完成任务所占用的时间。
R 支持很多数据库,其中 SQLite 是最轻量级和简单的。有一个 RSQLite 包,允许用户在 R 中对 SQLite 进行操作。这些操作包括了对 SQLite 数据库进行读写,执行 SQL 语句和在 R 中获取执行结果。所以,如果我们能够把需要的算法“翻译”到 SQL 语句版本,数据集的大小只受限于硬盘的大小和我们能够接受的执行时间。
采用上面的那个例子,我这里说明我们会怎样用数据库和 SQL 语句来对数据集进行回归。首先我们要把数据塞到硬盘上面。
上述代码有很多 rm() 和 gc() ,函数,这些函数是用来移除没有用的临时变量和释放内存。当代码运行完毕的时候,你就会发现在你的工作空间中有一个 320M 左右的 regression.db 文件。然后就是最重要的一步了:把回归的算法转化为 SQL。
我们有
β^=(X′X)−1X′y
而且,无论 n 有多大,X′X 和 X′y 的大小总是 (p+1)∗(p+1) 。如果变量不是很多,R 处理矩阵逆和矩阵乘法还是很轻松的,所以我们的主要目标是用 SQL 来计算 X′X 和 X′y 。
由于 X=(x0,x1,…,xp),所以 X′X 可以表达为:
$$%
而每一个矩阵元素都可以用 SQL 来计算,比如说:
我们可以用 R 来生成 SQL 语句,然后把语句发送到 SQLite :
可以看出差别是舍入误差导致的。
以上计算用了大约 17 秒,远远超出矩阵运算的时间。不过它也几乎没有占用额外的内存空间。实际上我们采用了“时间换空间”的策略。此外,你可能还发现,我们可以通过多个对数据库的连接同步地计算 sum(x0*x0), sum(x0*x1), ..., sum(x5*x5) ,所以如果你有一个多核的服务器(而且硬盘足够快),你还可以通过适当的安排大量地减少运行时间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31