用户在线行为学,从点击数据背后说起
在国内,消费者在线行为学领域找不到腕儿的原因有多种:
碍于实践及专注问题,传统行为学(消费者心理学)领域就没有出现专家;
互联网数据分析技术(GA/Ominture等)工具使用,关注度低。
用户在线行为学,如果不使用用户浏览行为、使用数据、点击数据、交互数据、眼动图等,那就无异于盲人摸象。但是非常可怜,这个领域连摸的人都不多,都忙着上炒作,融资,忽悠去了。
周末受老朋友宋星邀请,参加WAW网站分析年度聚会,看到一群小伙伴在很低调地从微观数据、定量角度分析网民行为,DSP、互联网广告投放的数据解析。结合他们思考,也触发我的思考,下面将会议碎片思考与大家交流。(编者注:下文序号不因标题改变原有次序)
1、国内互联网营销、电商、金融等行业数据分析的现状是:极致追求对数据的处理,用数学模型、工具等想渴望完美,然而上帝是不会让这些基于西方科学实证主义的家伙得逞。满嘴实证主义的数据,其实数据背后意义的诠释还缺天才级的洞察和框架。定性VS定量,争论将永存。
2、Cookie作为在线用户访问标识,是行业垂直重度使用的一个技术和维度。现状是经常被定期清除,比例很高,周期上接近48%清除。Cookie的接近38%是在国内公用电脑上的问题,也会给精准数据追求带来挑战,只能采取变通的方法,继续垂直分类,或者刻画区别用户。
3、当下在线行为学领域擅长的冲动是:打标签。给用户的不同维度贴上标签,从之前的人口属性标签,走向行为标签,兴趣标签,更精细的标签。人物画像,是个不错的思考角度和方向。
4、行为碎片化、跨屏化,User ID监测难度加大。传统互联网数据分析,都是块状、连贯性、多屏互动的时代,如何有效评估一个用户前后顺序、访问行为,销售转换效果评估等?行业解决的思路是打通数据,尤其是规模性的(淘宝ID、微信ID、微博ID、百度ID等)资源方的合作。
5、未来的世界,数据将成为各家企业互相PK的资源,谁掌握DT,谁就拥有未来资源的财产权。当然这样的财产权也是有期限的,例如当微博引爆时,微博上的用户及行为数据的价值是爆棚的,随着微博的衰落,数据资源价值下降。BAT手里掌握的用户在线行为数据量是个诱惑的金矿,但开采水平很低。
跨屏行为数据的分析,目前业界转向和运营商合作(移动、电信),通过多维度的流量使用、手机账号、家庭宽带数据等综合解析被低估,重来没有开放使用好的资源。
6、DSP程序化购买热门背后,是互联网正在形成一张密织的网,网与网开始连接,通过ID或数据匹配来打通,形成用户互联网上浏览的闭环。给我们很好地从群体或围观个体来看用户在线行为。
7、百度指数:搜索指数;淘宝指数:购买指数;天气预报指数、赛况指数、路况指数以及消极指数——积极指数场景;通过数据变化来进行精准投放和引导。通过大的数据趋势,来把握大方向及变化。如果我们可以通过分析社交网络上的群体消费者情绪,我们就可以针对性投放不同角度(积极/消极)的广告。
未来即时性的反馈和要求越来越明显,灵活是王道
8、如何刻画,描述在线情绪?“调节游戏节奏,改善情绪旅途”很酷的观点。游戏忒简单,没兴趣,游戏忒难,玩家就会有焦虑。如何平衡焦虑和爽?通过心流(Flow)来调整游戏难度,背后也是数据的支持。例如在某些游戏中功能分为2个范畴:
9、客户留存率、新客获得、平均生命周期数据问题,培养用户生命周期及分层对待的思维。从行为学及互联网数据来刻画用户行为路线图,找出用户热情消减、变迁的模型,以此来干预客户流失问题。
10、我们如何在日常工作、学习中培养自己的数据思维?国人一直没有数据导向的习惯,从现在开始不妨养成习惯数据化。
11、场景越来越性感,用户行为学的核心问题是:场景感知和用户行为动机的融合。大数据,带来场景感知的时代,微观、宏观都有较大幅度的创新。
记录思考,一起碰撞!
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10